L(s) = 1 | + (1 + i)2-s + (−1 − i)3-s + 2i·4-s + (2 + i)5-s − 2i·6-s + (−2 + 2i)8-s − i·9-s + (1 + 3i)10-s + (−3 − 3i)11-s + (2 − 2i)12-s + (−3 − 3i)13-s + (−1 − 3i)15-s − 4·16-s + 4i·17-s + (1 − i)18-s + (−1 + i)19-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.577 − 0.577i)3-s + i·4-s + (0.894 + 0.447i)5-s − 0.816i·6-s + (−0.707 + 0.707i)8-s − 0.333i·9-s + (0.316 + 0.948i)10-s + (−0.904 − 0.904i)11-s + (0.577 − 0.577i)12-s + (−0.832 − 0.832i)13-s + (−0.258 − 0.774i)15-s − 16-s + 0.970i·17-s + (0.235 − 0.235i)18-s + (−0.229 + 0.229i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.755 - 0.655i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.755 - 0.655i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.10789 + 0.413506i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.10789 + 0.413506i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 5 | \( 1 + (-2 - i)T \) |
good | 3 | \( 1 + (1 + i)T + 3iT^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 + (3 + 3i)T + 11iT^{2} \) |
| 13 | \( 1 + (3 + 3i)T + 13iT^{2} \) |
| 17 | \( 1 - 4iT - 17T^{2} \) |
| 19 | \( 1 + (1 - i)T - 19iT^{2} \) |
| 23 | \( 1 - 8T + 23T^{2} \) |
| 29 | \( 1 + (-3 + 3i)T - 29iT^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + (3 - 3i)T - 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + (3 - 3i)T - 43iT^{2} \) |
| 47 | \( 1 - 2iT - 47T^{2} \) |
| 53 | \( 1 + (-9 + 9i)T - 53iT^{2} \) |
| 59 | \( 1 + (-9 - 9i)T + 59iT^{2} \) |
| 61 | \( 1 + (5 - 5i)T - 61iT^{2} \) |
| 67 | \( 1 + (-3 - 3i)T + 67iT^{2} \) |
| 71 | \( 1 - 6iT - 71T^{2} \) |
| 73 | \( 1 + 6T + 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + (9 + 9i)T + 83iT^{2} \) |
| 89 | \( 1 + 12iT - 89T^{2} \) |
| 97 | \( 1 + 12iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.57742198816264828588736620394, −13.21263327872961666426845699339, −12.85605969118348066594036764241, −11.49524970232935581612553876823, −10.26075897927273957609018588390, −8.550786391460375997190461702687, −7.18837648543051429883700073371, −6.13044312346254729524365106867, −5.28560249338780965286128836829, −3.00055124653600007170672131703,
2.35800388573391443252054775612, 4.81303490109649790741175582599, 5.16957075528633276263265883990, 6.91565115638612820206505696023, 9.228785443790332110863380008958, 10.07059388567639789516193372782, 10.96056544901509384935604857787, 12.17801621362332164398493210095, 13.12580103815786168627567314299, 14.04901381589848517669287105152