L(s) = 1 | + (1 + i)2-s + (−1 − i)3-s + 2i·4-s + (2 + i)5-s − 2i·6-s + (−2 + 2i)8-s − i·9-s + (1 + 3i)10-s + (−3 − 3i)11-s + (2 − 2i)12-s + (−3 − 3i)13-s + (−1 − 3i)15-s − 4·16-s + 4i·17-s + (1 − i)18-s + (−1 + i)19-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.577 − 0.577i)3-s + i·4-s + (0.894 + 0.447i)5-s − 0.816i·6-s + (−0.707 + 0.707i)8-s − 0.333i·9-s + (0.316 + 0.948i)10-s + (−0.904 − 0.904i)11-s + (0.577 − 0.577i)12-s + (−0.832 − 0.832i)13-s + (−0.258 − 0.774i)15-s − 16-s + 0.970i·17-s + (0.235 − 0.235i)18-s + (−0.229 + 0.229i)19-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)(0.755−0.655i)Λ(2−s)
Λ(s)=(=(80s/2ΓC(s+1/2)L(s)(0.755−0.655i)Λ(1−s)
Degree: |
2 |
Conductor: |
80
= 24⋅5
|
Sign: |
0.755−0.655i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ80(69,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 80, ( :1/2), 0.755−0.655i)
|
Particular Values
L(1) |
≈ |
1.10789+0.413506i |
L(21) |
≈ |
1.10789+0.413506i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1−i)T |
| 5 | 1+(−2−i)T |
good | 3 | 1+(1+i)T+3iT2 |
| 7 | 1+7T2 |
| 11 | 1+(3+3i)T+11iT2 |
| 13 | 1+(3+3i)T+13iT2 |
| 17 | 1−4iT−17T2 |
| 19 | 1+(1−i)T−19iT2 |
| 23 | 1−8T+23T2 |
| 29 | 1+(−3+3i)T−29iT2 |
| 31 | 1+31T2 |
| 37 | 1+(3−3i)T−37iT2 |
| 41 | 1−41T2 |
| 43 | 1+(3−3i)T−43iT2 |
| 47 | 1−2iT−47T2 |
| 53 | 1+(−9+9i)T−53iT2 |
| 59 | 1+(−9−9i)T+59iT2 |
| 61 | 1+(5−5i)T−61iT2 |
| 67 | 1+(−3−3i)T+67iT2 |
| 71 | 1−6iT−71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1+(9+9i)T+83iT2 |
| 89 | 1+12iT−89T2 |
| 97 | 1+12iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.57742198816264828588736620394, −13.21263327872961666426845699339, −12.85605969118348066594036764241, −11.49524970232935581612553876823, −10.26075897927273957609018588390, −8.550786391460375997190461702687, −7.18837648543051429883700073371, −6.13044312346254729524365106867, −5.28560249338780965286128836829, −3.00055124653600007170672131703,
2.35800388573391443252054775612, 4.81303490109649790741175582599, 5.16957075528633276263265883990, 6.91565115638612820206505696023, 9.228785443790332110863380008958, 10.07059388567639789516193372782, 10.96056544901509384935604857787, 12.17801621362332164398493210095, 13.12580103815786168627567314299, 14.04901381589848517669287105152