L(s) = 1 | + (−0.161 − 1.40i)2-s + (0.734 − 0.734i)3-s + (−1.94 + 0.452i)4-s + (−1.17 − 1.90i)5-s + (−1.14 − 0.913i)6-s + 1.71·7-s + (0.949 + 2.66i)8-s + 1.92i·9-s + (−2.48 + 1.95i)10-s + (2.82 − 2.82i)11-s + (−1.09 + 1.76i)12-s + (−2.59 + 2.59i)13-s + (−0.276 − 2.40i)14-s + (−2.25 − 0.537i)15-s + (3.59 − 1.76i)16-s + 1.89i·17-s + ⋯ |
L(s) = 1 | + (−0.113 − 0.993i)2-s + (0.423 − 0.423i)3-s + (−0.974 + 0.226i)4-s + (−0.524 − 0.851i)5-s + (−0.469 − 0.372i)6-s + 0.648·7-s + (0.335 + 0.941i)8-s + 0.640i·9-s + (−0.786 + 0.617i)10-s + (0.852 − 0.852i)11-s + (−0.317 + 0.508i)12-s + (−0.719 + 0.719i)13-s + (−0.0738 − 0.643i)14-s + (−0.583 − 0.138i)15-s + (0.897 − 0.440i)16-s + 0.460i·17-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)(−0.168+0.985i)Λ(2−s)
Λ(s)=(=(80s/2ΓC(s+1/2)L(s)(−0.168+0.985i)Λ(1−s)
Degree: |
2 |
Conductor: |
80
= 24⋅5
|
Sign: |
−0.168+0.985i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ80(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 80, ( :1/2), −0.168+0.985i)
|
Particular Values
L(1) |
≈ |
0.593411−0.703776i |
L(21) |
≈ |
0.593411−0.703776i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.161+1.40i)T |
| 5 | 1+(1.17+1.90i)T |
good | 3 | 1+(−0.734+0.734i)T−3iT2 |
| 7 | 1−1.71T+7T2 |
| 11 | 1+(−2.82+2.82i)T−11iT2 |
| 13 | 1+(2.59−2.59i)T−13iT2 |
| 17 | 1−1.89iT−17T2 |
| 19 | 1+(−2.89−2.89i)T+19iT2 |
| 23 | 1−2.00T+23T2 |
| 29 | 1+(6.72+6.72i)T+29iT2 |
| 31 | 1+7.11T+31T2 |
| 37 | 1+(−2.25−2.25i)T+37iT2 |
| 41 | 1−1.59iT−41T2 |
| 43 | 1+(8.06+8.06i)T+43iT2 |
| 47 | 1−4.43iT−47T2 |
| 53 | 1+(−0.481−0.481i)T+53iT2 |
| 59 | 1+(−3.08+3.08i)T−59iT2 |
| 61 | 1+(−3.46−3.46i)T+61iT2 |
| 67 | 1+(−1.80+1.80i)T−67iT2 |
| 71 | 1−0.379iT−71T2 |
| 73 | 1−8.37T+73T2 |
| 79 | 1−11.2T+79T2 |
| 83 | 1+(8.24−8.24i)T−83iT2 |
| 89 | 1+11.9iT−89T2 |
| 97 | 1−6.50iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.85683644678238828575415444092, −12.93114899151371344449372519681, −11.82956232471594561059082557174, −11.15559107902226723162603906496, −9.513756907126071962480608850244, −8.514573610283005270587140680518, −7.66126779756824784354080325840, −5.20701664578464931718198818531, −3.84069826645771333305387753811, −1.71650780813667433124270790332,
3.57954630959318027825433039589, 5.01099989333800356264361893145, 6.82842522520423858023852797214, 7.60831575936211312757661852472, 9.035842943502200819094537211908, 9.914829144796099010591664576025, 11.36547128909570204310854211682, 12.69351780976896352691880962471, 14.31051691936246715757610062454, 14.81509773716136642927017166041