L(s) = 1 | + (−1 + i)2-s + (1 − i)3-s − 2i·4-s + (1 − 2i)5-s + 2i·6-s + (2 + 2i)8-s + i·9-s + (1 + 3i)10-s + (−3 + 3i)11-s + (−2 − 2i)12-s + (3 − 3i)13-s + (−1 − 3i)15-s − 4·16-s + 4i·17-s + (−1 − i)18-s + (−1 − i)19-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.577 − 0.577i)3-s − i·4-s + (0.447 − 0.894i)5-s + 0.816i·6-s + (0.707 + 0.707i)8-s + 0.333i·9-s + (0.316 + 0.948i)10-s + (−0.904 + 0.904i)11-s + (−0.577 − 0.577i)12-s + (0.832 − 0.832i)13-s + (−0.258 − 0.774i)15-s − 16-s + 0.970i·17-s + (−0.235 − 0.235i)18-s + (−0.229 − 0.229i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0708i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0708i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.835659 - 0.0296568i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.835659 - 0.0296568i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 5 | \( 1 + (-1 + 2i)T \) |
good | 3 | \( 1 + (-1 + i)T - 3iT^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 + (3 - 3i)T - 11iT^{2} \) |
| 13 | \( 1 + (-3 + 3i)T - 13iT^{2} \) |
| 17 | \( 1 - 4iT - 17T^{2} \) |
| 19 | \( 1 + (1 + i)T + 19iT^{2} \) |
| 23 | \( 1 + 8T + 23T^{2} \) |
| 29 | \( 1 + (-3 - 3i)T + 29iT^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + (-3 - 3i)T + 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + (-3 - 3i)T + 43iT^{2} \) |
| 47 | \( 1 - 2iT - 47T^{2} \) |
| 53 | \( 1 + (9 + 9i)T + 53iT^{2} \) |
| 59 | \( 1 + (-9 + 9i)T - 59iT^{2} \) |
| 61 | \( 1 + (5 + 5i)T + 61iT^{2} \) |
| 67 | \( 1 + (3 - 3i)T - 67iT^{2} \) |
| 71 | \( 1 + 6iT - 71T^{2} \) |
| 73 | \( 1 - 6T + 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + (-9 + 9i)T - 83iT^{2} \) |
| 89 | \( 1 - 12iT - 89T^{2} \) |
| 97 | \( 1 + 12iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.40961390949872677282428971982, −13.35575430209823148734361938811, −12.65503725385643908561619473780, −10.69096341676788920220445688197, −9.731379494354792100923490262160, −8.283214005580134722423170567174, −7.955042095620064103982772188440, −6.25801948258685009188092670275, −4.94519126799145894471468277245, −1.87808949039494321075128461614,
2.63230194781690904930246602242, 3.87649783842984427497926954231, 6.30026986621631158380811466648, 7.88841615959089504205364663306, 9.047040914803898684021525532806, 9.977915016614731615484456961755, 10.88115227422887522374158348317, 11.90748346611457144115278497932, 13.53370766369937713346205913049, 14.16526480917337796251134109767