L(s) = 1 | + (1.41 − 0.0660i)2-s − 0.496·3-s + (1.99 − 0.186i)4-s + (−2.00 − 0.987i)5-s + (−0.701 + 0.0328i)6-s + (1.55 + 1.55i)7-s + (2.80 − 0.395i)8-s − 2.75·9-s + (−2.89 − 1.26i)10-s + (−4.19 + 4.19i)11-s + (−0.988 + 0.0927i)12-s − 5.09i·13-s + (2.29 + 2.09i)14-s + (0.996 + 0.490i)15-s + (3.93 − 0.743i)16-s + (0.213 + 0.213i)17-s + ⋯ |
L(s) = 1 | + (0.998 − 0.0467i)2-s − 0.286·3-s + (0.995 − 0.0933i)4-s + (−0.897 − 0.441i)5-s + (−0.286 + 0.0133i)6-s + (0.587 + 0.587i)7-s + (0.990 − 0.139i)8-s − 0.917·9-s + (−0.916 − 0.399i)10-s + (−1.26 + 1.26i)11-s + (−0.285 + 0.0267i)12-s − 1.41i·13-s + (0.614 + 0.559i)14-s + (0.257 + 0.126i)15-s + (0.982 − 0.185i)16-s + (0.0517 + 0.0517i)17-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)(0.994+0.109i)Λ(2−s)
Λ(s)=(=(80s/2ΓC(s+1/2)L(s)(0.994+0.109i)Λ(1−s)
Degree: |
2 |
Conductor: |
80
= 24⋅5
|
Sign: |
0.994+0.109i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ80(27,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 80, ( :1/2), 0.994+0.109i)
|
Particular Values
L(1) |
≈ |
1.33117−0.0728634i |
L(21) |
≈ |
1.33117−0.0728634i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.41+0.0660i)T |
| 5 | 1+(2.00+0.987i)T |
good | 3 | 1+0.496T+3T2 |
| 7 | 1+(−1.55−1.55i)T+7iT2 |
| 11 | 1+(4.19−4.19i)T−11iT2 |
| 13 | 1+5.09iT−13T2 |
| 17 | 1+(−0.213−0.213i)T+17iT2 |
| 19 | 1+(−0.844+0.844i)T−19iT2 |
| 23 | 1+(−1.70+1.70i)T−23iT2 |
| 29 | 1+(−2.24−2.24i)T+29iT2 |
| 31 | 1−0.818iT−31T2 |
| 37 | 1+5.12iT−37T2 |
| 41 | 1−3.34iT−41T2 |
| 43 | 1−4.49iT−43T2 |
| 47 | 1+(−4.29+4.29i)T−47iT2 |
| 53 | 1+1.00T+53T2 |
| 59 | 1+(7.65+7.65i)T+59iT2 |
| 61 | 1+(1.90−1.90i)T−61iT2 |
| 67 | 1−11.0iT−67T2 |
| 71 | 1+10.5T+71T2 |
| 73 | 1+(−2.70−2.70i)T+73iT2 |
| 79 | 1+8.32T+79T2 |
| 83 | 1+9.17T+83T2 |
| 89 | 1+4.25T+89T2 |
| 97 | 1+(7.15+7.15i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.59855240063187609005930318053, −12.98025049548092383137913306227, −12.37901667288690164834641086643, −11.39500172540144681204082650881, −10.42162312147607482937588967410, −8.358868483545534764774981994394, −7.42298903810641290860573678287, −5.53037620697632889151644035045, −4.79443285457722772839826610075, −2.84000252646329249803409146391,
3.06187346871391095084032398811, 4.54159301100008861327880128511, 5.93215966959188736103960503054, 7.32166178882836081414107368594, 8.357535148674643010251516203813, 10.71534314597435587853256524963, 11.26328412528775299033848077462, 12.07366657820142949147814534885, 13.69297980386297648504775100503, 14.15685738139674212737010779481