L(s) = 1 | − 2i·3-s + (−1 − 2i)5-s + 2i·7-s − 9-s + 4·11-s + 4i·13-s + (−4 + 2i)15-s − 4·19-s + 4·21-s + 2i·23-s + (−3 + 4i)25-s − 4i·27-s − 2·29-s − 8i·33-s + (4 − 2i)35-s + ⋯ |
L(s) = 1 | − 1.15i·3-s + (−0.447 − 0.894i)5-s + 0.755i·7-s − 0.333·9-s + 1.20·11-s + 1.10i·13-s + (−1.03 + 0.516i)15-s − 0.917·19-s + 0.872·21-s + 0.417i·23-s + (−0.600 + 0.800i)25-s − 0.769i·27-s − 0.371·29-s − 1.39i·33-s + (0.676 − 0.338i)35-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)(0.447+0.894i)Λ(2−s)
Λ(s)=(=(80s/2ΓC(s+1/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
80
= 24⋅5
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ80(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 80, ( :1/2), 0.447+0.894i)
|
Particular Values
L(1) |
≈ |
0.789428−0.487893i |
L(21) |
≈ |
0.789428−0.487893i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(1+2i)T |
good | 3 | 1+2iT−3T2 |
| 7 | 1−2iT−7T2 |
| 11 | 1−4T+11T2 |
| 13 | 1−4iT−13T2 |
| 17 | 1−17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1−2iT−23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1+31T2 |
| 37 | 1+4iT−37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1−6iT−43T2 |
| 47 | 1+6iT−47T2 |
| 53 | 1+4iT−53T2 |
| 59 | 1+12T+59T2 |
| 61 | 1+10T+61T2 |
| 67 | 1−14iT−67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1−8iT−73T2 |
| 79 | 1−16T+79T2 |
| 83 | 1+2iT−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+16iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.03027895351106023041294264280, −12.91997052424831310620284565891, −12.15060959609603369715962295845, −11.46522605854082072550973007185, −9.352390215483697261062375577735, −8.531576274232393632586704936129, −7.21583158999792306410434978903, −6.06383267017174124142765982170, −4.26729765342000317017177688222, −1.71634013614640719267961657709,
3.43992358269873926659198241096, 4.44387010686589718708577246840, 6.36127294369327897367988140029, 7.67898330238913181870458570066, 9.210189714894171573445856454892, 10.44721562698896132870423004877, 10.86241726330800794944868649596, 12.27661252309399260434141940896, 13.80403053219716984980398795584, 14.87516829368151963944878567818