L(s) = 1 | + (1.73 + 1.73i)3-s + (−1 − 2i)5-s + (−1.73 + 1.73i)7-s + 2.99i·9-s − 3.46i·11-s + (1 − i)13-s + (1.73 − 5.19i)15-s + (1 + i)17-s − 6.92·19-s − 5.99·21-s + (1.73 + 1.73i)23-s + (−3 + 4i)25-s − 4i·29-s + 3.46i·31-s + (5.99 − 5.99i)33-s + ⋯ |
L(s) = 1 | + (0.999 + 0.999i)3-s + (−0.447 − 0.894i)5-s + (−0.654 + 0.654i)7-s + 0.999i·9-s − 1.04i·11-s + (0.277 − 0.277i)13-s + (0.447 − 1.34i)15-s + (0.242 + 0.242i)17-s − 1.58·19-s − 1.30·21-s + (0.361 + 0.361i)23-s + (−0.600 + 0.800i)25-s − 0.742i·29-s + 0.622i·31-s + (1.04 − 1.04i)33-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)(0.880−0.473i)Λ(2−s)
Λ(s)=(=(80s/2ΓC(s+1/2)L(s)(0.880−0.473i)Λ(1−s)
Degree: |
2 |
Conductor: |
80
= 24⋅5
|
Sign: |
0.880−0.473i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ80(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 80, ( :1/2), 0.880−0.473i)
|
Particular Values
L(1) |
≈ |
1.07761+0.271502i |
L(21) |
≈ |
1.07761+0.271502i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(1+2i)T |
good | 3 | 1+(−1.73−1.73i)T+3iT2 |
| 7 | 1+(1.73−1.73i)T−7iT2 |
| 11 | 1+3.46iT−11T2 |
| 13 | 1+(−1+i)T−13iT2 |
| 17 | 1+(−1−i)T+17iT2 |
| 19 | 1+6.92T+19T2 |
| 23 | 1+(−1.73−1.73i)T+23iT2 |
| 29 | 1+4iT−29T2 |
| 31 | 1−3.46iT−31T2 |
| 37 | 1+(−5−5i)T+37iT2 |
| 41 | 1−2T+41T2 |
| 43 | 1+(−1.73−1.73i)T+43iT2 |
| 47 | 1+(1.73−1.73i)T−47iT2 |
| 53 | 1+(7−7i)T−53iT2 |
| 59 | 1−6.92T+59T2 |
| 61 | 1−6T+61T2 |
| 67 | 1+(−5.19+5.19i)T−67iT2 |
| 71 | 1+10.3iT−71T2 |
| 73 | 1+(7−7i)T−73iT2 |
| 79 | 1+79T2 |
| 83 | 1+(12.1+12.1i)T+83iT2 |
| 89 | 1+8iT−89T2 |
| 97 | 1+(7+7i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.71090846090380778188436539511, −13.42494735283822726129684489878, −12.50690298290117027560355194327, −11.08610604803245630663376174860, −9.751647727107471937945948420299, −8.798299079799299029076745321181, −8.206117683332553297486206698747, −5.97394988416631984998054114805, −4.35629388791130093372305338230, −3.11052228621699238958233508278,
2.41274550187004575203414873566, 3.93949304533825941930484225373, 6.65081477425201624883865452323, 7.24424605309752547319996364290, 8.391230144772941163596719172237, 9.825688468270321541522511683163, 11.01609878409626437252855464725, 12.52613665865153356054539447726, 13.20980434599533370792205502058, 14.38612350534080979559586096360