L(s) = 1 | + (1.73 + 1.73i)3-s + (−1 − 2i)5-s + (−1.73 + 1.73i)7-s + 2.99i·9-s − 3.46i·11-s + (1 − i)13-s + (1.73 − 5.19i)15-s + (1 + i)17-s − 6.92·19-s − 5.99·21-s + (1.73 + 1.73i)23-s + (−3 + 4i)25-s − 4i·29-s + 3.46i·31-s + (5.99 − 5.99i)33-s + ⋯ |
L(s) = 1 | + (0.999 + 0.999i)3-s + (−0.447 − 0.894i)5-s + (−0.654 + 0.654i)7-s + 0.999i·9-s − 1.04i·11-s + (0.277 − 0.277i)13-s + (0.447 − 1.34i)15-s + (0.242 + 0.242i)17-s − 1.58·19-s − 1.30·21-s + (0.361 + 0.361i)23-s + (−0.600 + 0.800i)25-s − 0.742i·29-s + 0.622i·31-s + (1.04 − 1.04i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.880 - 0.473i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.880 - 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.07761 + 0.271502i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07761 + 0.271502i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1 + 2i)T \) |
good | 3 | \( 1 + (-1.73 - 1.73i)T + 3iT^{2} \) |
| 7 | \( 1 + (1.73 - 1.73i)T - 7iT^{2} \) |
| 11 | \( 1 + 3.46iT - 11T^{2} \) |
| 13 | \( 1 + (-1 + i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1 - i)T + 17iT^{2} \) |
| 19 | \( 1 + 6.92T + 19T^{2} \) |
| 23 | \( 1 + (-1.73 - 1.73i)T + 23iT^{2} \) |
| 29 | \( 1 + 4iT - 29T^{2} \) |
| 31 | \( 1 - 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (-5 - 5i)T + 37iT^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 + (-1.73 - 1.73i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.73 - 1.73i)T - 47iT^{2} \) |
| 53 | \( 1 + (7 - 7i)T - 53iT^{2} \) |
| 59 | \( 1 - 6.92T + 59T^{2} \) |
| 61 | \( 1 - 6T + 61T^{2} \) |
| 67 | \( 1 + (-5.19 + 5.19i)T - 67iT^{2} \) |
| 71 | \( 1 + 10.3iT - 71T^{2} \) |
| 73 | \( 1 + (7 - 7i)T - 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (12.1 + 12.1i)T + 83iT^{2} \) |
| 89 | \( 1 + 8iT - 89T^{2} \) |
| 97 | \( 1 + (7 + 7i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.71090846090380778188436539511, −13.42494735283822726129684489878, −12.50690298290117027560355194327, −11.08610604803245630663376174860, −9.751647727107471937945948420299, −8.798299079799299029076745321181, −8.206117683332553297486206698747, −5.97394988416631984998054114805, −4.35629388791130093372305338230, −3.11052228621699238958233508278,
2.41274550187004575203414873566, 3.93949304533825941930484225373, 6.65081477425201624883865452323, 7.24424605309752547319996364290, 8.391230144772941163596719172237, 9.825688468270321541522511683163, 11.01609878409626437252855464725, 12.52613665865153356054539447726, 13.20980434599533370792205502058, 14.38612350534080979559586096360