L(s) = 1 | + (2 − i)5-s + 3i·9-s + (−5 − 5i)13-s + (−5 + 5i)17-s + (3 − 4i)25-s + 4i·29-s + (5 − 5i)37-s + 8·41-s + (3 + 6i)45-s − 7i·49-s + (5 + 5i)53-s − 12·61-s + (−15 − 5i)65-s + (5 + 5i)73-s − 9·81-s + ⋯ |
L(s) = 1 | + (0.894 − 0.447i)5-s + i·9-s + (−1.38 − 1.38i)13-s + (−1.21 + 1.21i)17-s + (0.600 − 0.800i)25-s + 0.742i·29-s + (0.821 − 0.821i)37-s + 1.24·41-s + (0.447 + 0.894i)45-s − i·49-s + (0.686 + 0.686i)53-s − 1.53·61-s + (−1.86 − 0.620i)65-s + (0.585 + 0.585i)73-s − 81-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)(0.995+0.0898i)Λ(2−s)
Λ(s)=(=(80s/2ΓC(s+1/2)L(s)(0.995+0.0898i)Λ(1−s)
Degree: |
2 |
Conductor: |
80
= 24⋅5
|
Sign: |
0.995+0.0898i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ80(63,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 80, ( :1/2), 0.995+0.0898i)
|
Particular Values
L(1) |
≈ |
1.01291−0.0455749i |
L(21) |
≈ |
1.01291−0.0455749i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−2+i)T |
good | 3 | 1−3iT2 |
| 7 | 1+7iT2 |
| 11 | 1−11T2 |
| 13 | 1+(5+5i)T+13iT2 |
| 17 | 1+(5−5i)T−17iT2 |
| 19 | 1+19T2 |
| 23 | 1−23iT2 |
| 29 | 1−4iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1+(−5+5i)T−37iT2 |
| 41 | 1−8T+41T2 |
| 43 | 1−43iT2 |
| 47 | 1+47iT2 |
| 53 | 1+(−5−5i)T+53iT2 |
| 59 | 1+59T2 |
| 61 | 1+12T+61T2 |
| 67 | 1+67iT2 |
| 71 | 1−71T2 |
| 73 | 1+(−5−5i)T+73iT2 |
| 79 | 1+79T2 |
| 83 | 1−83iT2 |
| 89 | 1+16iT−89T2 |
| 97 | 1+(−5+5i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.32719116835131344129120718687, −13.13304650984422156221169451965, −12.60039612390521967293181515483, −10.85059261549145160635221462498, −10.06377174762825158964122584652, −8.755222109170443434349305797563, −7.53894588705916063426304420155, −5.87142516828485734671431238577, −4.75363631493516026702961808663, −2.33847888997287159193861359754,
2.49781743409028979957278186652, 4.59227006210364649411590411646, 6.29307059904154622423476335696, 7.18411973635644872290120913485, 9.215903905955930506680129574560, 9.674845215232649046593868163176, 11.22182095132037467626831895479, 12.18903620283370482013499177600, 13.52087354184667345390636775401, 14.36196059830176043760838360071