L(s) = 1 | + (0.562 − 1.29i)2-s + (0.209 − 0.209i)3-s + (−1.36 − 1.45i)4-s + (0.707 + 0.707i)5-s + (−0.154 − 0.389i)6-s − 1.73i·7-s + (−2.66 + 0.952i)8-s + 2.91i·9-s + (1.31 − 0.519i)10-s + (0.505 + 0.505i)11-s + (−0.592 − 0.0194i)12-s + (−1.88 + 1.88i)13-s + (−2.25 − 0.977i)14-s + 0.296·15-s + (−0.262 + 3.99i)16-s + 4.53·17-s + ⋯ |
L(s) = 1 | + (0.397 − 0.917i)2-s + (0.120 − 0.120i)3-s + (−0.683 − 0.729i)4-s + (0.316 + 0.316i)5-s + (−0.0628 − 0.159i)6-s − 0.656i·7-s + (−0.941 + 0.336i)8-s + 0.970i·9-s + (0.415 − 0.164i)10-s + (0.152 + 0.152i)11-s + (−0.171 − 0.00561i)12-s + (−0.523 + 0.523i)13-s + (−0.602 − 0.261i)14-s + 0.0765·15-s + (−0.0655 + 0.997i)16-s + 1.09·17-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)(0.321+0.946i)Λ(2−s)
Λ(s)=(=(80s/2ΓC(s+1/2)L(s)(0.321+0.946i)Λ(1−s)
Degree: |
2 |
Conductor: |
80
= 24⋅5
|
Sign: |
0.321+0.946i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ80(21,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 80, ( :1/2), 0.321+0.946i)
|
Particular Values
L(1) |
≈ |
0.910638−0.652648i |
L(21) |
≈ |
0.910638−0.652648i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.562+1.29i)T |
| 5 | 1+(−0.707−0.707i)T |
good | 3 | 1+(−0.209+0.209i)T−3iT2 |
| 7 | 1+1.73iT−7T2 |
| 11 | 1+(−0.505−0.505i)T+11iT2 |
| 13 | 1+(1.88−1.88i)T−13iT2 |
| 17 | 1−4.53T+17T2 |
| 19 | 1+(3.22−3.22i)T−19iT2 |
| 23 | 1+8.85iT−23T2 |
| 29 | 1+(2.44−2.44i)T−29iT2 |
| 31 | 1+5.70T+31T2 |
| 37 | 1+(5.35+5.35i)T+37iT2 |
| 41 | 1+10.0iT−41T2 |
| 43 | 1+(2.10+2.10i)T+43iT2 |
| 47 | 1−4.32T+47T2 |
| 53 | 1+(1.37+1.37i)T+53iT2 |
| 59 | 1+(−6.64−6.64i)T+59iT2 |
| 61 | 1+(−5.26+5.26i)T−61iT2 |
| 67 | 1+(10.5−10.5i)T−67iT2 |
| 71 | 1−14.0iT−71T2 |
| 73 | 1−6.63iT−73T2 |
| 79 | 1−4.27T+79T2 |
| 83 | 1+(−9.15+9.15i)T−83iT2 |
| 89 | 1+3.23iT−89T2 |
| 97 | 1−1.94T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.27371398753111586618978286863, −13.03219913014797193643474418612, −12.14337761863172029024201584505, −10.68555411513024738462666858584, −10.23417910637396873061323568057, −8.743489391040442548666316258199, −7.15866525257726208591423397397, −5.46835453361246655882758634900, −4.00474697638882823292828938126, −2.15694204486794891944584670387,
3.40262913038877110843840701119, 5.16220912860181285299764065021, 6.19630405849260286173486799408, 7.64420686629694987094620622626, 8.935514093002883866758704993845, 9.719099882024863277772482871803, 11.76233078115189870350164928693, 12.63523425561765253982061124271, 13.64836172894177716997041997252, 14.92799911556472090816870719680