L(s) = 1 | + (1.09 − 0.889i)2-s + (−0.120 − 0.120i)3-s + (0.418 − 1.95i)4-s + (−0.707 + 0.707i)5-s + (−0.238 − 0.0252i)6-s + 2.66i·7-s + (−1.27 − 2.52i)8-s − 2.97i·9-s + (−0.148 + 1.40i)10-s + (−3.49 + 3.49i)11-s + (−0.284 + 0.184i)12-s + (2.94 + 2.94i)13-s + (2.37 + 2.93i)14-s + 0.169·15-s + (−3.64 − 1.63i)16-s + 1.85·17-s + ⋯ |
L(s) = 1 | + (0.777 − 0.628i)2-s + (−0.0692 − 0.0692i)3-s + (0.209 − 0.977i)4-s + (−0.316 + 0.316i)5-s + (−0.0974 − 0.0103i)6-s + 1.00i·7-s + (−0.452 − 0.892i)8-s − 0.990i·9-s + (−0.0470 + 0.444i)10-s + (−1.05 + 1.05i)11-s + (−0.0822 + 0.0532i)12-s + (0.815 + 0.815i)13-s + (0.634 + 0.784i)14-s + 0.0438·15-s + (−0.912 − 0.409i)16-s + 0.448·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.686 + 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.686 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.15620 - 0.498769i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.15620 - 0.498769i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.09 + 0.889i)T \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
good | 3 | \( 1 + (0.120 + 0.120i)T + 3iT^{2} \) |
| 7 | \( 1 - 2.66iT - 7T^{2} \) |
| 11 | \( 1 + (3.49 - 3.49i)T - 11iT^{2} \) |
| 13 | \( 1 + (-2.94 - 2.94i)T + 13iT^{2} \) |
| 17 | \( 1 - 1.85T + 17T^{2} \) |
| 19 | \( 1 + (3.44 + 3.44i)T + 19iT^{2} \) |
| 23 | \( 1 + 0.707iT - 23T^{2} \) |
| 29 | \( 1 + (3.49 + 3.49i)T + 29iT^{2} \) |
| 31 | \( 1 - 6.84T + 31T^{2} \) |
| 37 | \( 1 + (0.0975 - 0.0975i)T - 37iT^{2} \) |
| 41 | \( 1 + 10.2iT - 41T^{2} \) |
| 43 | \( 1 + (-4.43 + 4.43i)T - 43iT^{2} \) |
| 47 | \( 1 + 1.89T + 47T^{2} \) |
| 53 | \( 1 + (7.43 - 7.43i)T - 53iT^{2} \) |
| 59 | \( 1 + (-0.959 + 0.959i)T - 59iT^{2} \) |
| 61 | \( 1 + (-6.49 - 6.49i)T + 61iT^{2} \) |
| 67 | \( 1 + (-3.49 - 3.49i)T + 67iT^{2} \) |
| 71 | \( 1 - 7.86iT - 71T^{2} \) |
| 73 | \( 1 - 15.6iT - 73T^{2} \) |
| 79 | \( 1 + 6.70T + 79T^{2} \) |
| 83 | \( 1 + (3.87 + 3.87i)T + 83iT^{2} \) |
| 89 | \( 1 - 10.5iT - 89T^{2} \) |
| 97 | \( 1 - 4.79T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.23999436590030247274426277155, −12.92967874858091376482797568087, −12.16718431993555287663477665261, −11.28318028511447054200071947552, −10.02731191576842261792548863641, −8.847625755503298800933982657784, −6.92545453694030598168826981481, −5.72702093116153551512454909827, −4.18279215762973442274404449718, −2.48720399837190436023573471264,
3.38028737164568903032151918570, 4.85044760492588689779600432482, 6.06093940610133685757631829097, 7.79989498170825628106330563327, 8.225908749823123915281804373468, 10.46440698273592368723416579831, 11.25937282014677062778248834614, 12.89971593051123853098059524432, 13.39572566766988987564733095866, 14.39847697888012679555592258747