L(s) = 1 | + (1.09 − 0.889i)2-s + (−0.120 − 0.120i)3-s + (0.418 − 1.95i)4-s + (−0.707 + 0.707i)5-s + (−0.238 − 0.0252i)6-s + 2.66i·7-s + (−1.27 − 2.52i)8-s − 2.97i·9-s + (−0.148 + 1.40i)10-s + (−3.49 + 3.49i)11-s + (−0.284 + 0.184i)12-s + (2.94 + 2.94i)13-s + (2.37 + 2.93i)14-s + 0.169·15-s + (−3.64 − 1.63i)16-s + 1.85·17-s + ⋯ |
L(s) = 1 | + (0.777 − 0.628i)2-s + (−0.0692 − 0.0692i)3-s + (0.209 − 0.977i)4-s + (−0.316 + 0.316i)5-s + (−0.0974 − 0.0103i)6-s + 1.00i·7-s + (−0.452 − 0.892i)8-s − 0.990i·9-s + (−0.0470 + 0.444i)10-s + (−1.05 + 1.05i)11-s + (−0.0822 + 0.0532i)12-s + (0.815 + 0.815i)13-s + (0.634 + 0.784i)14-s + 0.0438·15-s + (−0.912 − 0.409i)16-s + 0.448·17-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)(0.686+0.727i)Λ(2−s)
Λ(s)=(=(80s/2ΓC(s+1/2)L(s)(0.686+0.727i)Λ(1−s)
Degree: |
2 |
Conductor: |
80
= 24⋅5
|
Sign: |
0.686+0.727i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ80(61,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 80, ( :1/2), 0.686+0.727i)
|
Particular Values
L(1) |
≈ |
1.15620−0.498769i |
L(21) |
≈ |
1.15620−0.498769i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.09+0.889i)T |
| 5 | 1+(0.707−0.707i)T |
good | 3 | 1+(0.120+0.120i)T+3iT2 |
| 7 | 1−2.66iT−7T2 |
| 11 | 1+(3.49−3.49i)T−11iT2 |
| 13 | 1+(−2.94−2.94i)T+13iT2 |
| 17 | 1−1.85T+17T2 |
| 19 | 1+(3.44+3.44i)T+19iT2 |
| 23 | 1+0.707iT−23T2 |
| 29 | 1+(3.49+3.49i)T+29iT2 |
| 31 | 1−6.84T+31T2 |
| 37 | 1+(0.0975−0.0975i)T−37iT2 |
| 41 | 1+10.2iT−41T2 |
| 43 | 1+(−4.43+4.43i)T−43iT2 |
| 47 | 1+1.89T+47T2 |
| 53 | 1+(7.43−7.43i)T−53iT2 |
| 59 | 1+(−0.959+0.959i)T−59iT2 |
| 61 | 1+(−6.49−6.49i)T+61iT2 |
| 67 | 1+(−3.49−3.49i)T+67iT2 |
| 71 | 1−7.86iT−71T2 |
| 73 | 1−15.6iT−73T2 |
| 79 | 1+6.70T+79T2 |
| 83 | 1+(3.87+3.87i)T+83iT2 |
| 89 | 1−10.5iT−89T2 |
| 97 | 1−4.79T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.23999436590030247274426277155, −12.92967874858091376482797568087, −12.16718431993555287663477665261, −11.28318028511447054200071947552, −10.02731191576842261792548863641, −8.847625755503298800933982657784, −6.92545453694030598168826981481, −5.72702093116153551512454909827, −4.18279215762973442274404449718, −2.48720399837190436023573471264,
3.38028737164568903032151918570, 4.85044760492588689779600432482, 6.06093940610133685757631829097, 7.79989498170825628106330563327, 8.225908749823123915281804373468, 10.46440698273592368723416579831, 11.25937282014677062778248834614, 12.89971593051123853098059524432, 13.39572566766988987564733095866, 14.39847697888012679555592258747