L(s) = 1 | + (0.114 − 1.40i)2-s + (1.42 + 1.42i)3-s + (−1.97 − 0.323i)4-s + (0.707 − 0.707i)5-s + (2.16 − 1.84i)6-s − 0.690i·7-s + (−0.681 + 2.74i)8-s + 1.05i·9-s + (−0.915 − 1.07i)10-s + (−3.06 + 3.06i)11-s + (−2.34 − 3.26i)12-s + (−2.33 − 2.33i)13-s + (−0.973 − 0.0791i)14-s + 2.01·15-s + (3.79 + 1.27i)16-s − 5.28·17-s + ⋯ |
L(s) = 1 | + (0.0810 − 0.996i)2-s + (0.821 + 0.821i)3-s + (−0.986 − 0.161i)4-s + (0.316 − 0.316i)5-s + (0.885 − 0.752i)6-s − 0.261i·7-s + (−0.241 + 0.970i)8-s + 0.350i·9-s + (−0.289 − 0.340i)10-s + (−0.922 + 0.922i)11-s + (−0.678 − 0.943i)12-s + (−0.648 − 0.648i)13-s + (−0.260 − 0.0211i)14-s + 0.519·15-s + (0.947 + 0.318i)16-s − 1.28·17-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)(0.753+0.657i)Λ(2−s)
Λ(s)=(=(80s/2ΓC(s+1/2)L(s)(0.753+0.657i)Λ(1−s)
Degree: |
2 |
Conductor: |
80
= 24⋅5
|
Sign: |
0.753+0.657i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ80(61,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 80, ( :1/2), 0.753+0.657i)
|
Particular Values
L(1) |
≈ |
1.04236−0.390743i |
L(21) |
≈ |
1.04236−0.390743i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.114+1.40i)T |
| 5 | 1+(−0.707+0.707i)T |
good | 3 | 1+(−1.42−1.42i)T+3iT2 |
| 7 | 1+0.690iT−7T2 |
| 11 | 1+(3.06−3.06i)T−11iT2 |
| 13 | 1+(2.33+2.33i)T+13iT2 |
| 17 | 1+5.28T+17T2 |
| 19 | 1+(−5.38−5.38i)T+19iT2 |
| 23 | 1+1.60iT−23T2 |
| 29 | 1+(−1.70−1.70i)T+29iT2 |
| 31 | 1+4.69T+31T2 |
| 37 | 1+(−7.89+7.89i)T−37iT2 |
| 41 | 1+5.49iT−41T2 |
| 43 | 1+(0.256−0.256i)T−43iT2 |
| 47 | 1+4.60T+47T2 |
| 53 | 1+(4.99−4.99i)T−53iT2 |
| 59 | 1+(−1.46+1.46i)T−59iT2 |
| 61 | 1+(−9.33−9.33i)T+61iT2 |
| 67 | 1+(1.94+1.94i)T+67iT2 |
| 71 | 1+2.32iT−71T2 |
| 73 | 1+1.29iT−73T2 |
| 79 | 1+5.01T+79T2 |
| 83 | 1+(−7.30−7.30i)T+83iT2 |
| 89 | 1−1.81iT−89T2 |
| 97 | 1−5.27T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.22890094039456774819182675157, −13.11467991561381190608720528795, −12.25280011233827527645767404237, −10.65405570675765892881303329849, −9.892896818146779231860846065307, −9.083974796699196057912080254561, −7.78165413865513886131663624735, −5.26688393391931109975047175565, −4.05901604608916736471959729945, −2.52433147495870099152724511179,
2.79467274517295580445009505376, 5.04124931081060413285163400043, 6.56741479125777722843350410967, 7.55123048161366281581913923317, 8.575080363596953921949685562426, 9.597245367975935464203977782933, 11.36328204350741554845725855087, 13.10816596063821793858297646821, 13.49053721839988048102278912219, 14.39272466205385451468999495655