L(s) = 1 | + (−0.376 + 1.36i)2-s + (1.82 + 1.82i)3-s + (−1.71 − 1.02i)4-s + (−0.707 + 0.707i)5-s + (−3.18 + 1.80i)6-s − 4.50i·7-s + (2.04 − 1.95i)8-s + 3.68i·9-s + (−0.697 − 1.23i)10-s + (−1.64 + 1.64i)11-s + (−1.25 − 5.01i)12-s + (1.51 + 1.51i)13-s + (6.14 + 1.69i)14-s − 2.58·15-s + (1.88 + 3.52i)16-s + 1.45·17-s + ⋯ |
L(s) = 1 | + (−0.266 + 0.963i)2-s + (1.05 + 1.05i)3-s + (−0.857 − 0.513i)4-s + (−0.316 + 0.316i)5-s + (−1.29 + 0.735i)6-s − 1.70i·7-s + (0.723 − 0.689i)8-s + 1.22i·9-s + (−0.220 − 0.389i)10-s + (−0.494 + 0.494i)11-s + (−0.363 − 1.44i)12-s + (0.421 + 0.421i)13-s + (1.64 + 0.454i)14-s − 0.667·15-s + (0.472 + 0.881i)16-s + 0.353·17-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)(−0.0988−0.995i)Λ(2−s)
Λ(s)=(=(80s/2ΓC(s+1/2)L(s)(−0.0988−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
80
= 24⋅5
|
Sign: |
−0.0988−0.995i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ80(61,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 80, ( :1/2), −0.0988−0.995i)
|
Particular Values
L(1) |
≈ |
0.666421+0.735884i |
L(21) |
≈ |
0.666421+0.735884i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.376−1.36i)T |
| 5 | 1+(0.707−0.707i)T |
good | 3 | 1+(−1.82−1.82i)T+3iT2 |
| 7 | 1+4.50iT−7T2 |
| 11 | 1+(1.64−1.64i)T−11iT2 |
| 13 | 1+(−1.51−1.51i)T+13iT2 |
| 17 | 1−1.45T+17T2 |
| 19 | 1+(2.67+2.67i)T+19iT2 |
| 23 | 1+2.37iT−23T2 |
| 29 | 1+(−0.924−0.924i)T+29iT2 |
| 31 | 1+7.20T+31T2 |
| 37 | 1+(5.21−5.21i)T−37iT2 |
| 41 | 1−6.41iT−41T2 |
| 43 | 1+(−7.65+7.65i)T−43iT2 |
| 47 | 1+2.51T+47T2 |
| 53 | 1+(−1.50+1.50i)T−53iT2 |
| 59 | 1+(5.31−5.31i)T−59iT2 |
| 61 | 1+(1.02+1.02i)T+61iT2 |
| 67 | 1+(−5.22−5.22i)T+67iT2 |
| 71 | 1−1.92iT−71T2 |
| 73 | 1−1.39iT−73T2 |
| 79 | 1−5.06T+79T2 |
| 83 | 1+(2.44+2.44i)T+83iT2 |
| 89 | 1+9.36iT−89T2 |
| 97 | 1−18.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.71796274625662716417148016335, −14.06951415423938629829684853257, −13.14877535830764258062259869839, −10.72763045386641419368718933036, −10.13652678341726017087153635563, −8.970342272924689566178977452773, −7.84126496234031060278032406163, −6.86794620573944544649623891067, −4.65335156379218792221861664415, −3.73755730382643648849698937949,
2.03022076746033015488101457574, 3.29575440362236288092380560256, 5.60535764418082492606475597258, 7.78351584323572552141405667020, 8.527250540411935600621316309651, 9.269412083593274534852182304164, 11.01396473911854365108775664753, 12.37571028843833352734430446061, 12.66316755462734607074089909619, 13.81233730874694649503616323634