Properties

Label 2-80-1.1-c3-0-4
Degree $2$
Conductor $80$
Sign $-1$
Analytic cond. $4.72015$
Root an. cond. $2.17259$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 5·5-s − 16·7-s − 11·9-s − 36·11-s − 42·13-s − 20·15-s − 110·17-s + 116·19-s + 64·21-s − 16·23-s + 25·25-s + 152·27-s + 198·29-s − 240·31-s + 144·33-s − 80·35-s − 258·37-s + 168·39-s + 442·41-s + 292·43-s − 55·45-s − 392·47-s − 87·49-s + 440·51-s + 142·53-s − 180·55-s + ⋯
L(s)  = 1  − 0.769·3-s + 0.447·5-s − 0.863·7-s − 0.407·9-s − 0.986·11-s − 0.896·13-s − 0.344·15-s − 1.56·17-s + 1.40·19-s + 0.665·21-s − 0.145·23-s + 1/5·25-s + 1.08·27-s + 1.26·29-s − 1.39·31-s + 0.759·33-s − 0.386·35-s − 1.14·37-s + 0.689·39-s + 1.68·41-s + 1.03·43-s − 0.182·45-s − 1.21·47-s − 0.253·49-s + 1.20·51-s + 0.368·53-s − 0.441·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80\)    =    \(2^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(4.72015\)
Root analytic conductor: \(2.17259\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 80,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p T \)
good3 \( 1 + 4 T + p^{3} T^{2} \)
7 \( 1 + 16 T + p^{3} T^{2} \)
11 \( 1 + 36 T + p^{3} T^{2} \)
13 \( 1 + 42 T + p^{3} T^{2} \)
17 \( 1 + 110 T + p^{3} T^{2} \)
19 \( 1 - 116 T + p^{3} T^{2} \)
23 \( 1 + 16 T + p^{3} T^{2} \)
29 \( 1 - 198 T + p^{3} T^{2} \)
31 \( 1 + 240 T + p^{3} T^{2} \)
37 \( 1 + 258 T + p^{3} T^{2} \)
41 \( 1 - 442 T + p^{3} T^{2} \)
43 \( 1 - 292 T + p^{3} T^{2} \)
47 \( 1 + 392 T + p^{3} T^{2} \)
53 \( 1 - 142 T + p^{3} T^{2} \)
59 \( 1 - 348 T + p^{3} T^{2} \)
61 \( 1 + 570 T + p^{3} T^{2} \)
67 \( 1 + 692 T + p^{3} T^{2} \)
71 \( 1 + 168 T + p^{3} T^{2} \)
73 \( 1 + 134 T + p^{3} T^{2} \)
79 \( 1 + 784 T + p^{3} T^{2} \)
83 \( 1 + 564 T + p^{3} T^{2} \)
89 \( 1 - 1034 T + p^{3} T^{2} \)
97 \( 1 + 382 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.22538600531996881562382386705, −12.30521513184253479476220435903, −11.12011393016412624966777750987, −10.11448004665311727661237648972, −8.990843325262090310752088601388, −7.28293716104390498989943590781, −6.05299899701135205314443605801, −4.96488709320214319464905331628, −2.75461691048782432772157823045, 0, 2.75461691048782432772157823045, 4.96488709320214319464905331628, 6.05299899701135205314443605801, 7.28293716104390498989943590781, 8.990843325262090310752088601388, 10.11448004665311727661237648972, 11.12011393016412624966777750987, 12.30521513184253479476220435903, 13.22538600531996881562382386705

Graph of the $Z$-function along the critical line