L(s) = 1 | − 4·3-s + 5·5-s − 16·7-s − 11·9-s − 36·11-s − 42·13-s − 20·15-s − 110·17-s + 116·19-s + 64·21-s − 16·23-s + 25·25-s + 152·27-s + 198·29-s − 240·31-s + 144·33-s − 80·35-s − 258·37-s + 168·39-s + 442·41-s + 292·43-s − 55·45-s − 392·47-s − 87·49-s + 440·51-s + 142·53-s − 180·55-s + ⋯ |
L(s) = 1 | − 0.769·3-s + 0.447·5-s − 0.863·7-s − 0.407·9-s − 0.986·11-s − 0.896·13-s − 0.344·15-s − 1.56·17-s + 1.40·19-s + 0.665·21-s − 0.145·23-s + 1/5·25-s + 1.08·27-s + 1.26·29-s − 1.39·31-s + 0.759·33-s − 0.386·35-s − 1.14·37-s + 0.689·39-s + 1.68·41-s + 1.03·43-s − 0.182·45-s − 1.21·47-s − 0.253·49-s + 1.20·51-s + 0.368·53-s − 0.441·55-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(80s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−pT |
good | 3 | 1+4T+p3T2 |
| 7 | 1+16T+p3T2 |
| 11 | 1+36T+p3T2 |
| 13 | 1+42T+p3T2 |
| 17 | 1+110T+p3T2 |
| 19 | 1−116T+p3T2 |
| 23 | 1+16T+p3T2 |
| 29 | 1−198T+p3T2 |
| 31 | 1+240T+p3T2 |
| 37 | 1+258T+p3T2 |
| 41 | 1−442T+p3T2 |
| 43 | 1−292T+p3T2 |
| 47 | 1+392T+p3T2 |
| 53 | 1−142T+p3T2 |
| 59 | 1−348T+p3T2 |
| 61 | 1+570T+p3T2 |
| 67 | 1+692T+p3T2 |
| 71 | 1+168T+p3T2 |
| 73 | 1+134T+p3T2 |
| 79 | 1+784T+p3T2 |
| 83 | 1+564T+p3T2 |
| 89 | 1−1034T+p3T2 |
| 97 | 1+382T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.22538600531996881562382386705, −12.30521513184253479476220435903, −11.12011393016412624966777750987, −10.11448004665311727661237648972, −8.990843325262090310752088601388, −7.28293716104390498989943590781, −6.05299899701135205314443605801, −4.96488709320214319464905331628, −2.75461691048782432772157823045, 0,
2.75461691048782432772157823045, 4.96488709320214319464905331628, 6.05299899701135205314443605801, 7.28293716104390498989943590781, 8.990843325262090310752088601388, 10.11448004665311727661237648972, 11.12011393016412624966777750987, 12.30521513184253479476220435903, 13.22538600531996881562382386705