L(s) = 1 | − 4·3-s + 5·5-s − 16·7-s − 11·9-s − 36·11-s − 42·13-s − 20·15-s − 110·17-s + 116·19-s + 64·21-s − 16·23-s + 25·25-s + 152·27-s + 198·29-s − 240·31-s + 144·33-s − 80·35-s − 258·37-s + 168·39-s + 442·41-s + 292·43-s − 55·45-s − 392·47-s − 87·49-s + 440·51-s + 142·53-s − 180·55-s + ⋯ |
L(s) = 1 | − 0.769·3-s + 0.447·5-s − 0.863·7-s − 0.407·9-s − 0.986·11-s − 0.896·13-s − 0.344·15-s − 1.56·17-s + 1.40·19-s + 0.665·21-s − 0.145·23-s + 1/5·25-s + 1.08·27-s + 1.26·29-s − 1.39·31-s + 0.759·33-s − 0.386·35-s − 1.14·37-s + 0.689·39-s + 1.68·41-s + 1.03·43-s − 0.182·45-s − 1.21·47-s − 0.253·49-s + 1.20·51-s + 0.368·53-s − 0.441·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - p T \) |
good | 3 | \( 1 + 4 T + p^{3} T^{2} \) |
| 7 | \( 1 + 16 T + p^{3} T^{2} \) |
| 11 | \( 1 + 36 T + p^{3} T^{2} \) |
| 13 | \( 1 + 42 T + p^{3} T^{2} \) |
| 17 | \( 1 + 110 T + p^{3} T^{2} \) |
| 19 | \( 1 - 116 T + p^{3} T^{2} \) |
| 23 | \( 1 + 16 T + p^{3} T^{2} \) |
| 29 | \( 1 - 198 T + p^{3} T^{2} \) |
| 31 | \( 1 + 240 T + p^{3} T^{2} \) |
| 37 | \( 1 + 258 T + p^{3} T^{2} \) |
| 41 | \( 1 - 442 T + p^{3} T^{2} \) |
| 43 | \( 1 - 292 T + p^{3} T^{2} \) |
| 47 | \( 1 + 392 T + p^{3} T^{2} \) |
| 53 | \( 1 - 142 T + p^{3} T^{2} \) |
| 59 | \( 1 - 348 T + p^{3} T^{2} \) |
| 61 | \( 1 + 570 T + p^{3} T^{2} \) |
| 67 | \( 1 + 692 T + p^{3} T^{2} \) |
| 71 | \( 1 + 168 T + p^{3} T^{2} \) |
| 73 | \( 1 + 134 T + p^{3} T^{2} \) |
| 79 | \( 1 + 784 T + p^{3} T^{2} \) |
| 83 | \( 1 + 564 T + p^{3} T^{2} \) |
| 89 | \( 1 - 1034 T + p^{3} T^{2} \) |
| 97 | \( 1 + 382 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.22538600531996881562382386705, −12.30521513184253479476220435903, −11.12011393016412624966777750987, −10.11448004665311727661237648972, −8.990843325262090310752088601388, −7.28293716104390498989943590781, −6.05299899701135205314443605801, −4.96488709320214319464905331628, −2.75461691048782432772157823045, 0,
2.75461691048782432772157823045, 4.96488709320214319464905331628, 6.05299899701135205314443605801, 7.28293716104390498989943590781, 8.990843325262090310752088601388, 10.11448004665311727661237648972, 11.12011393016412624966777750987, 12.30521513184253479476220435903, 13.22538600531996881562382386705