Properties

Label 2-80-1.1-c21-0-11
Degree $2$
Conductor $80$
Sign $1$
Analytic cond. $223.581$
Root an. cond. $14.9526$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.79e4·3-s − 9.76e6·5-s − 6.67e8·7-s − 8.16e9·9-s + 1.26e11·11-s + 9.12e11·13-s + 4.68e11·15-s + 8.60e12·17-s + 6.93e12·19-s + 3.20e13·21-s + 3.30e14·23-s + 9.53e13·25-s + 8.92e14·27-s − 3.90e15·29-s − 3.32e15·31-s − 6.07e15·33-s + 6.52e15·35-s − 4.33e16·37-s − 4.37e16·39-s − 9.56e16·41-s + 7.81e16·43-s + 7.97e16·45-s + 2.03e17·47-s − 1.12e17·49-s − 4.12e17·51-s + 1.42e18·53-s − 1.23e18·55-s + ⋯
L(s)  = 1  − 0.468·3-s − 0.447·5-s − 0.893·7-s − 0.780·9-s + 1.47·11-s + 1.83·13-s + 0.209·15-s + 1.03·17-s + 0.259·19-s + 0.418·21-s + 1.66·23-s + 0.199·25-s + 0.834·27-s − 1.72·29-s − 0.727·31-s − 0.690·33-s + 0.399·35-s − 1.48·37-s − 0.860·39-s − 1.11·41-s + 0.551·43-s + 0.349·45-s + 0.564·47-s − 0.201·49-s − 0.485·51-s + 1.11·53-s − 0.659·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80\)    =    \(2^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(223.581\)
Root analytic conductor: \(14.9526\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 80,\ (\ :21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(1.688782996\)
\(L(\frac12)\) \(\approx\) \(1.688782996\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 9.76e6T \)
good3 \( 1 + 4.79e4T + 1.04e10T^{2} \)
7 \( 1 + 6.67e8T + 5.58e17T^{2} \)
11 \( 1 - 1.26e11T + 7.40e21T^{2} \)
13 \( 1 - 9.12e11T + 2.47e23T^{2} \)
17 \( 1 - 8.60e12T + 6.90e25T^{2} \)
19 \( 1 - 6.93e12T + 7.14e26T^{2} \)
23 \( 1 - 3.30e14T + 3.94e28T^{2} \)
29 \( 1 + 3.90e15T + 5.13e30T^{2} \)
31 \( 1 + 3.32e15T + 2.08e31T^{2} \)
37 \( 1 + 4.33e16T + 8.55e32T^{2} \)
41 \( 1 + 9.56e16T + 7.38e33T^{2} \)
43 \( 1 - 7.81e16T + 2.00e34T^{2} \)
47 \( 1 - 2.03e17T + 1.30e35T^{2} \)
53 \( 1 - 1.42e18T + 1.62e36T^{2} \)
59 \( 1 + 2.28e18T + 1.54e37T^{2} \)
61 \( 1 + 5.32e18T + 3.10e37T^{2} \)
67 \( 1 - 1.31e19T + 2.22e38T^{2} \)
71 \( 1 - 2.98e19T + 7.52e38T^{2} \)
73 \( 1 - 1.37e18T + 1.34e39T^{2} \)
79 \( 1 + 1.74e19T + 7.08e39T^{2} \)
83 \( 1 + 3.75e19T + 1.99e40T^{2} \)
89 \( 1 - 2.43e20T + 8.65e40T^{2} \)
97 \( 1 + 1.80e20T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.78864462770805101729053899041, −9.286662644454206807728707160482, −8.644865390586306989862122776662, −7.12621932811982775529013102149, −6.23205311757413509889144840701, −5.37721946921374744253736107503, −3.66545286488089139818453427330, −3.35006483537657709078053752191, −1.44926322757208746880444991362, −0.59413376800117591162270982246, 0.59413376800117591162270982246, 1.44926322757208746880444991362, 3.35006483537657709078053752191, 3.66545286488089139818453427330, 5.37721946921374744253736107503, 6.23205311757413509889144840701, 7.12621932811982775529013102149, 8.644865390586306989862122776662, 9.286662644454206807728707160482, 10.78864462770805101729053899041

Graph of the $Z$-function along the critical line