L(s) = 1 | + (0.5 − 0.866i)2-s + (−1 − 1.73i)3-s + (3.5 + 6.06i)4-s + (8 − 13.8i)5-s − 1.99·6-s + 15·8-s + (11.5 − 19.9i)9-s + (−7.99 − 13.8i)10-s + (4 + 6.92i)11-s + (7 − 12.1i)12-s − 28·13-s − 31.9·15-s + (−20.5 + 35.5i)16-s + (27 + 46.7i)17-s + (−11.5 − 19.9i)18-s + (−55 + 95.2i)19-s + ⋯ |
L(s) = 1 | + (0.176 − 0.306i)2-s + (−0.192 − 0.333i)3-s + (0.437 + 0.757i)4-s + (0.715 − 1.23i)5-s − 0.136·6-s + 0.662·8-s + (0.425 − 0.737i)9-s + (−0.252 − 0.438i)10-s + (0.109 + 0.189i)11-s + (0.168 − 0.291i)12-s − 0.597·13-s − 0.550·15-s + (−0.320 + 0.554i)16-s + (0.385 + 0.667i)17-s + (−0.150 − 0.260i)18-s + (−0.664 + 1.15i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 + 0.712i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.54483 - 0.647413i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.54483 - 0.647413i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T + (-4 - 6.92i)T^{2} \) |
| 3 | \( 1 + (1 + 1.73i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 + (-8 + 13.8i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-4 - 6.92i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 28T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-27 - 46.7i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (55 - 95.2i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (24 - 41.5i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 110T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-6 - 10.3i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-123 + 213. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 182T + 6.89e4T^{2} \) |
| 43 | \( 1 - 128T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-162 + 280. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-81 - 140. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-405 - 701. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (244 - 422. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (122 + 211. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 768T + 3.57e5T^{2} \) |
| 73 | \( 1 + (351 + 607. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (220 - 381. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 1.30e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-365 + 632. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 294T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.95928764465242081501564011250, −13.34551402561014419930281042466, −12.54759605560259208078556604664, −11.98062440207555109203400991660, −10.20260110566653581829369896777, −8.883811470031736088011551101749, −7.48518103583452484772492699557, −5.88548694663386714316467601804, −4.07313329170699156517493870062, −1.70256716586223987954185963424,
2.38851112186511548991445905713, 4.96186071834753755412435917722, 6.33374777178742990390553892608, 7.36064990897455679231355987419, 9.678773948849315475126704849014, 10.51231436876016165329947925052, 11.34566488586736534784652419080, 13.36103545347305961138218382611, 14.32159472098490108690740481478, 15.12449547211677895848558907652