L(s) = 1 | + (0.5 − 0.866i)2-s + (−1 − 1.73i)3-s + (3.5 + 6.06i)4-s + (8 − 13.8i)5-s − 1.99·6-s + 15·8-s + (11.5 − 19.9i)9-s + (−7.99 − 13.8i)10-s + (4 + 6.92i)11-s + (7 − 12.1i)12-s − 28·13-s − 31.9·15-s + (−20.5 + 35.5i)16-s + (27 + 46.7i)17-s + (−11.5 − 19.9i)18-s + (−55 + 95.2i)19-s + ⋯ |
L(s) = 1 | + (0.176 − 0.306i)2-s + (−0.192 − 0.333i)3-s + (0.437 + 0.757i)4-s + (0.715 − 1.23i)5-s − 0.136·6-s + 0.662·8-s + (0.425 − 0.737i)9-s + (−0.252 − 0.438i)10-s + (0.109 + 0.189i)11-s + (0.168 − 0.291i)12-s − 0.597·13-s − 0.550·15-s + (−0.320 + 0.554i)16-s + (0.385 + 0.667i)17-s + (−0.150 − 0.260i)18-s + (−0.664 + 1.15i)19-s + ⋯ |
Λ(s)=(=(49s/2ΓC(s)L(s)(0.701+0.712i)Λ(4−s)
Λ(s)=(=(49s/2ΓC(s+3/2)L(s)(0.701+0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
49
= 72
|
Sign: |
0.701+0.712i
|
Analytic conductor: |
2.89109 |
Root analytic conductor: |
1.70032 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ49(30,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 49, ( :3/2), 0.701+0.712i)
|
Particular Values
L(2) |
≈ |
1.54483−0.647413i |
L(21) |
≈ |
1.54483−0.647413i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
good | 2 | 1+(−0.5+0.866i)T+(−4−6.92i)T2 |
| 3 | 1+(1+1.73i)T+(−13.5+23.3i)T2 |
| 5 | 1+(−8+13.8i)T+(−62.5−108.i)T2 |
| 11 | 1+(−4−6.92i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+28T+2.19e3T2 |
| 17 | 1+(−27−46.7i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(55−95.2i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(24−41.5i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+110T+2.43e4T2 |
| 31 | 1+(−6−10.3i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(−123+213.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1+182T+6.89e4T2 |
| 43 | 1−128T+7.95e4T2 |
| 47 | 1+(−162+280.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(−81−140.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(−405−701.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(244−422.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(122+211.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+768T+3.57e5T2 |
| 73 | 1+(351+607.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(220−381.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1−1.30e3T+5.71e5T2 |
| 89 | 1+(−365+632.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+294T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.95928764465242081501564011250, −13.34551402561014419930281042466, −12.54759605560259208078556604664, −11.98062440207555109203400991660, −10.20260110566653581829369896777, −8.883811470031736088011551101749, −7.48518103583452484772492699557, −5.88548694663386714316467601804, −4.07313329170699156517493870062, −1.70256716586223987954185963424,
2.38851112186511548991445905713, 4.96186071834753755412435917722, 6.33374777178742990390553892608, 7.36064990897455679231355987419, 9.678773948849315475126704849014, 10.51231436876016165329947925052, 11.34566488586736534784652419080, 13.36103545347305961138218382611, 14.32159472098490108690740481478, 15.12449547211677895848558907652