Properties

Label 2-7e2-1.1-c7-0-14
Degree $2$
Conductor $49$
Sign $-1$
Analytic cond. $15.3068$
Root an. cond. $3.91239$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·2-s + 42·3-s − 92·4-s + 84·5-s − 252·6-s + 1.32e3·8-s − 423·9-s − 504·10-s − 5.56e3·11-s − 3.86e3·12-s + 5.15e3·13-s + 3.52e3·15-s + 3.85e3·16-s + 1.39e4·17-s + 2.53e3·18-s − 5.53e4·19-s − 7.72e3·20-s + 3.34e4·22-s − 9.12e4·23-s + 5.54e4·24-s − 7.10e4·25-s − 3.09e4·26-s − 1.09e5·27-s + 4.16e4·29-s − 2.11e4·30-s − 1.50e5·31-s − 1.92e5·32-s + ⋯
L(s)  = 1  − 0.530·2-s + 0.898·3-s − 0.718·4-s + 0.300·5-s − 0.476·6-s + 0.911·8-s − 0.193·9-s − 0.159·10-s − 1.26·11-s − 0.645·12-s + 0.650·13-s + 0.269·15-s + 0.235·16-s + 0.690·17-s + 0.102·18-s − 1.85·19-s − 0.216·20-s + 0.668·22-s − 1.56·23-s + 0.818·24-s − 0.909·25-s − 0.344·26-s − 1.07·27-s + 0.316·29-s − 0.143·30-s − 0.906·31-s − 1.03·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $-1$
Analytic conductor: \(15.3068\)
Root analytic conductor: \(3.91239\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 49,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + 3 p T + p^{7} T^{2} \)
3 \( 1 - 14 p T + p^{7} T^{2} \)
5 \( 1 - 84 T + p^{7} T^{2} \)
11 \( 1 + 5568 T + p^{7} T^{2} \)
13 \( 1 - 5152 T + p^{7} T^{2} \)
17 \( 1 - 13986 T + p^{7} T^{2} \)
19 \( 1 + 55370 T + p^{7} T^{2} \)
23 \( 1 + 91272 T + p^{7} T^{2} \)
29 \( 1 - 41610 T + p^{7} T^{2} \)
31 \( 1 + 150332 T + p^{7} T^{2} \)
37 \( 1 + 136366 T + p^{7} T^{2} \)
41 \( 1 - 510258 T + p^{7} T^{2} \)
43 \( 1 + 172072 T + p^{7} T^{2} \)
47 \( 1 - 519036 T + p^{7} T^{2} \)
53 \( 1 + 59202 T + p^{7} T^{2} \)
59 \( 1 + 1979250 T + p^{7} T^{2} \)
61 \( 1 - 2988748 T + p^{7} T^{2} \)
67 \( 1 - 2409404 T + p^{7} T^{2} \)
71 \( 1 - 1504512 T + p^{7} T^{2} \)
73 \( 1 - 1821022 T + p^{7} T^{2} \)
79 \( 1 + 1669240 T + p^{7} T^{2} \)
83 \( 1 + 696738 T + p^{7} T^{2} \)
89 \( 1 + 5558490 T + p^{7} T^{2} \)
97 \( 1 + 101822 p T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66249757393701650923927235805, −12.71920443633866476644313459251, −10.74466376290564794186139225827, −9.730998251008340509899866794607, −8.514199905656442900204160944455, −7.88781114289792529677732820903, −5.70376579669499892911437543617, −3.91868741583730322731664960762, −2.13237537609651696646917143737, 0, 2.13237537609651696646917143737, 3.91868741583730322731664960762, 5.70376579669499892911437543617, 7.88781114289792529677732820903, 8.514199905656442900204160944455, 9.730998251008340509899866794607, 10.74466376290564794186139225827, 12.71920443633866476644313459251, 13.66249757393701650923927235805

Graph of the $Z$-function along the critical line