Properties

Label 2-7e2-1.1-c25-0-7
Degree $2$
Conductor $49$
Sign $1$
Analytic cond. $194.038$
Root an. cond. $13.9297$
Motivic weight $25$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.41e3·2-s − 1.40e7·4-s − 2.10e11·8-s − 8.47e11·9-s − 9.50e12·11-s − 4.54e14·16-s − 3.73e15·18-s − 4.19e16·22-s − 9.56e16·23-s − 2.98e17·25-s − 3.80e18·29-s + 5.04e18·32-s + 1.19e19·36-s − 2.57e19·37-s + 3.01e20·43-s + 1.34e20·44-s − 4.21e20·46-s − 1.31e21·50-s − 5.53e20·53-s − 1.67e22·58-s + 3.75e22·64-s − 1.50e22·67-s − 3.60e22·71-s + 1.78e23·72-s − 1.13e23·74-s − 8.20e23·79-s + 7.17e23·81-s + ⋯
L(s)  = 1  + 0.761·2-s − 0.420·4-s − 1.08·8-s − 9-s − 0.913·11-s − 0.403·16-s − 0.761·18-s − 0.695·22-s − 0.909·23-s − 25-s − 1.99·29-s + 0.774·32-s + 0.420·36-s − 0.643·37-s + 1.15·43-s + 0.383·44-s − 0.692·46-s − 0.761·50-s − 0.154·53-s − 1.52·58-s + 0.992·64-s − 0.224·67-s − 0.261·71-s + 1.08·72-s − 0.490·74-s − 1.56·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $1$
Analytic conductor: \(194.038\)
Root analytic conductor: \(13.9297\)
Motivic weight: \(25\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :25/2),\ 1)\)

Particular Values

\(L(13)\) \(\approx\) \(0.6916787740\)
\(L(\frac12)\) \(\approx\) \(0.6916787740\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 - 4411 T + p^{25} T^{2} \)
3 \( 1 + p^{25} T^{2} \)
5 \( 1 + p^{25} T^{2} \)
11 \( 1 + 9505269254876 T + p^{25} T^{2} \)
13 \( 1 + p^{25} T^{2} \)
17 \( 1 + p^{25} T^{2} \)
19 \( 1 + p^{25} T^{2} \)
23 \( 1 + 95604060075370552 T + p^{25} T^{2} \)
29 \( 1 + 3807195347450164318 T + p^{25} T^{2} \)
31 \( 1 + p^{25} T^{2} \)
37 \( 1 + 25773142737840533286 T + p^{25} T^{2} \)
41 \( 1 + p^{25} T^{2} \)
43 \( 1 - \)\(30\!\cdots\!48\)\( T + p^{25} T^{2} \)
47 \( 1 + p^{25} T^{2} \)
53 \( 1 + \)\(55\!\cdots\!50\)\( T + p^{25} T^{2} \)
59 \( 1 + p^{25} T^{2} \)
61 \( 1 + p^{25} T^{2} \)
67 \( 1 + \)\(15\!\cdots\!36\)\( T + p^{25} T^{2} \)
71 \( 1 + \)\(36\!\cdots\!24\)\( T + p^{25} T^{2} \)
73 \( 1 + p^{25} T^{2} \)
79 \( 1 + \)\(82\!\cdots\!32\)\( T + p^{25} T^{2} \)
83 \( 1 + p^{25} T^{2} \)
89 \( 1 + p^{25} T^{2} \)
97 \( 1 + p^{25} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.11039969697398311648508766443, −9.755533693000087180886214285247, −8.687009297585923205442858813315, −7.63818198306635098999317389545, −5.94063844068593959646742885429, −5.40443014363834424447037537226, −4.15111986897859115444396668047, −3.17563953721982532172413688662, −2.09290403092636676961483912322, −0.29300586442806956321829653294, 0.29300586442806956321829653294, 2.09290403092636676961483912322, 3.17563953721982532172413688662, 4.15111986897859115444396668047, 5.40443014363834424447037537226, 5.94063844068593959646742885429, 7.63818198306635098999317389545, 8.687009297585923205442858813315, 9.755533693000087180886214285247, 11.11039969697398311648508766443

Graph of the $Z$-function along the critical line