Properties

Label 2-7e2-1.1-c23-0-9
Degree $2$
Conductor $49$
Sign $1$
Analytic cond. $164.249$
Root an. cond. $12.8160$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.18e3·2-s + 1.98e5·3-s + 1.75e6·4-s − 1.30e8·5-s − 6.31e8·6-s + 2.11e10·8-s − 5.48e10·9-s + 4.16e11·10-s − 8.54e11·11-s + 3.47e11·12-s + 4.39e12·13-s − 2.59e13·15-s − 8.19e13·16-s + 5.22e13·17-s + 1.74e14·18-s + 7.03e14·19-s − 2.29e14·20-s + 2.72e15·22-s − 6.02e15·23-s + 4.18e15·24-s + 5.19e15·25-s − 1.39e16·26-s − 2.95e16·27-s + 2.49e16·29-s + 8.26e16·30-s − 1.34e17·31-s + 8.38e16·32-s + ⋯
L(s)  = 1  − 1.09·2-s + 0.646·3-s + 0.208·4-s − 1.19·5-s − 0.710·6-s + 0.869·8-s − 0.582·9-s + 1.31·10-s − 0.902·11-s + 0.135·12-s + 0.680·13-s − 0.774·15-s − 1.16·16-s + 0.369·17-s + 0.640·18-s + 1.38·19-s − 0.250·20-s + 0.992·22-s − 1.31·23-s + 0.562·24-s + 0.436·25-s − 0.748·26-s − 1.02·27-s + 0.379·29-s + 0.851·30-s − 0.952·31-s + 0.411·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $1$
Analytic conductor: \(164.249\)
Root analytic conductor: \(12.8160\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :23/2),\ 1)\)

Particular Values

\(L(12)\) \(\approx\) \(0.3685992066\)
\(L(\frac12)\) \(\approx\) \(0.3685992066\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + 3.18e3T + 8.38e6T^{2} \)
3 \( 1 - 1.98e5T + 9.41e10T^{2} \)
5 \( 1 + 1.30e8T + 1.19e16T^{2} \)
11 \( 1 + 8.54e11T + 8.95e23T^{2} \)
13 \( 1 - 4.39e12T + 4.17e25T^{2} \)
17 \( 1 - 5.22e13T + 1.99e28T^{2} \)
19 \( 1 - 7.03e14T + 2.57e29T^{2} \)
23 \( 1 + 6.02e15T + 2.08e31T^{2} \)
29 \( 1 - 2.49e16T + 4.31e33T^{2} \)
31 \( 1 + 1.34e17T + 2.00e34T^{2} \)
37 \( 1 + 1.90e18T + 1.17e36T^{2} \)
41 \( 1 - 2.84e18T + 1.24e37T^{2} \)
43 \( 1 - 1.57e17T + 3.71e37T^{2} \)
47 \( 1 + 1.56e19T + 2.87e38T^{2} \)
53 \( 1 + 1.88e19T + 4.55e39T^{2} \)
59 \( 1 - 1.27e20T + 5.36e40T^{2} \)
61 \( 1 - 1.22e20T + 1.15e41T^{2} \)
67 \( 1 + 1.57e21T + 9.99e41T^{2} \)
71 \( 1 - 2.89e20T + 3.79e42T^{2} \)
73 \( 1 + 1.44e21T + 7.18e42T^{2} \)
79 \( 1 + 1.25e22T + 4.42e43T^{2} \)
83 \( 1 - 4.81e21T + 1.37e44T^{2} \)
89 \( 1 + 2.54e22T + 6.85e44T^{2} \)
97 \( 1 + 1.26e23T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96107824742911601170175129793, −9.840111591408455883098689176504, −8.685676876765432641738017001391, −8.019429954075773501911553587780, −7.36827061862471136295716531605, −5.45672384637850012665201496128, −3.99523067832619621882499600091, −3.03847666377473385442032389589, −1.60358608560525346198884222459, −0.30699689268574298896377435463, 0.30699689268574298896377435463, 1.60358608560525346198884222459, 3.03847666377473385442032389589, 3.99523067832619621882499600091, 5.45672384637850012665201496128, 7.36827061862471136295716531605, 8.019429954075773501911553587780, 8.685676876765432641738017001391, 9.840111591408455883098689176504, 10.96107824742911601170175129793

Graph of the $Z$-function along the critical line