Properties

Label 2-7e2-1.1-c23-0-50
Degree $2$
Conductor $49$
Sign $-1$
Analytic cond. $164.249$
Root an. cond. $12.8160$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.43e3·2-s − 1.62e5·3-s + 3.42e6·4-s − 1.45e8·5-s − 5.59e8·6-s − 1.70e10·8-s − 6.76e10·9-s − 5.01e11·10-s + 1.15e12·11-s − 5.57e11·12-s + 8.83e10·13-s + 2.37e13·15-s − 8.73e13·16-s + 2.16e14·17-s − 2.32e14·18-s + 8.54e14·19-s − 4.99e14·20-s + 3.98e15·22-s + 8.54e14·23-s + 2.77e15·24-s + 9.36e15·25-s + 3.03e14·26-s + 2.63e16·27-s + 1.01e14·29-s + 8.16e16·30-s − 4.00e16·31-s − 1.57e17·32-s + ⋯
L(s)  = 1  + 1.18·2-s − 0.530·3-s + 0.408·4-s − 1.33·5-s − 0.630·6-s − 0.702·8-s − 0.718·9-s − 1.58·10-s + 1.22·11-s − 0.216·12-s + 0.0136·13-s + 0.709·15-s − 1.24·16-s + 1.52·17-s − 0.852·18-s + 1.68·19-s − 0.545·20-s + 1.45·22-s + 0.187·23-s + 0.372·24-s + 0.785·25-s + 0.0162·26-s + 0.912·27-s + 0.00154·29-s + 0.841·30-s − 0.283·31-s − 0.771·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $-1$
Analytic conductor: \(164.249\)
Root analytic conductor: \(12.8160\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 49,\ (\ :23/2),\ -1)\)

Particular Values

\(L(12)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 - 3.43e3T + 8.38e6T^{2} \)
3 \( 1 + 1.62e5T + 9.41e10T^{2} \)
5 \( 1 + 1.45e8T + 1.19e16T^{2} \)
11 \( 1 - 1.15e12T + 8.95e23T^{2} \)
13 \( 1 - 8.83e10T + 4.17e25T^{2} \)
17 \( 1 - 2.16e14T + 1.99e28T^{2} \)
19 \( 1 - 8.54e14T + 2.57e29T^{2} \)
23 \( 1 - 8.54e14T + 2.08e31T^{2} \)
29 \( 1 - 1.01e14T + 4.31e33T^{2} \)
31 \( 1 + 4.00e16T + 2.00e34T^{2} \)
37 \( 1 + 1.48e18T + 1.17e36T^{2} \)
41 \( 1 - 2.26e18T + 1.24e37T^{2} \)
43 \( 1 - 1.87e17T + 3.71e37T^{2} \)
47 \( 1 + 2.98e19T + 2.87e38T^{2} \)
53 \( 1 + 9.67e19T + 4.55e39T^{2} \)
59 \( 1 + 2.17e19T + 5.36e40T^{2} \)
61 \( 1 - 4.33e20T + 1.15e41T^{2} \)
67 \( 1 - 3.42e20T + 9.99e41T^{2} \)
71 \( 1 + 1.52e21T + 3.79e42T^{2} \)
73 \( 1 - 2.68e21T + 7.18e42T^{2} \)
79 \( 1 - 6.89e21T + 4.42e43T^{2} \)
83 \( 1 + 1.03e22T + 1.37e44T^{2} \)
89 \( 1 + 3.54e22T + 6.85e44T^{2} \)
97 \( 1 + 6.64e22T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.32688526810229811347514474342, −9.488933845265946869881596162963, −8.185523817513365960664283807960, −6.93469756625369294391051800658, −5.72188900495852908523909502345, −4.87703970865276295612624857678, −3.63455495109075774858117643202, −3.20510070307321427148758352976, −1.09047601714530645230925872911, 0, 1.09047601714530645230925872911, 3.20510070307321427148758352976, 3.63455495109075774858117643202, 4.87703970865276295612624857678, 5.72188900495852908523909502345, 6.93469756625369294391051800658, 8.185523817513365960664283807960, 9.488933845265946869881596162963, 11.32688526810229811347514474342

Graph of the $Z$-function along the critical line