Properties

Label 2-7e2-1.1-c23-0-5
Degree $2$
Conductor $49$
Sign $1$
Analytic cond. $164.249$
Root an. cond. $12.8160$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.51e3·2-s − 3.53e5·3-s + 1.19e7·4-s − 1.94e8·5-s + 1.59e9·6-s − 1.62e10·8-s + 3.05e10·9-s + 8.76e11·10-s − 1.22e12·11-s − 4.23e12·12-s − 1.36e11·13-s + 6.86e13·15-s − 2.73e13·16-s + 2.11e14·17-s − 1.38e14·18-s − 4.59e14·19-s − 2.32e15·20-s + 5.51e15·22-s + 2.16e15·23-s + 5.72e15·24-s + 2.58e16·25-s + 6.15e14·26-s + 2.24e16·27-s − 3.79e16·29-s − 3.09e17·30-s − 7.62e16·31-s + 2.59e17·32-s + ⋯
L(s)  = 1  − 1.55·2-s − 1.15·3-s + 1.42·4-s − 1.77·5-s + 1.79·6-s − 0.667·8-s + 0.324·9-s + 2.77·10-s − 1.29·11-s − 1.64·12-s − 0.0211·13-s + 2.04·15-s − 0.388·16-s + 1.49·17-s − 0.506·18-s − 0.905·19-s − 2.54·20-s + 2.01·22-s + 0.474·23-s + 0.767·24-s + 2.16·25-s + 0.0329·26-s + 0.777·27-s − 0.577·29-s − 3.19·30-s − 0.539·31-s + 1.27·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $1$
Analytic conductor: \(164.249\)
Root analytic conductor: \(12.8160\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :23/2),\ 1)\)

Particular Values

\(L(12)\) \(\approx\) \(0.09187191019\)
\(L(\frac12)\) \(\approx\) \(0.09187191019\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + 4.51e3T + 8.38e6T^{2} \)
3 \( 1 + 3.53e5T + 9.41e10T^{2} \)
5 \( 1 + 1.94e8T + 1.19e16T^{2} \)
11 \( 1 + 1.22e12T + 8.95e23T^{2} \)
13 \( 1 + 1.36e11T + 4.17e25T^{2} \)
17 \( 1 - 2.11e14T + 1.99e28T^{2} \)
19 \( 1 + 4.59e14T + 2.57e29T^{2} \)
23 \( 1 - 2.16e15T + 2.08e31T^{2} \)
29 \( 1 + 3.79e16T + 4.31e33T^{2} \)
31 \( 1 + 7.62e16T + 2.00e34T^{2} \)
37 \( 1 - 4.27e17T + 1.17e36T^{2} \)
41 \( 1 - 2.13e18T + 1.24e37T^{2} \)
43 \( 1 - 5.86e17T + 3.71e37T^{2} \)
47 \( 1 - 2.96e19T + 2.87e38T^{2} \)
53 \( 1 + 1.73e18T + 4.55e39T^{2} \)
59 \( 1 - 3.94e19T + 5.36e40T^{2} \)
61 \( 1 - 6.22e19T + 1.15e41T^{2} \)
67 \( 1 + 1.13e21T + 9.99e41T^{2} \)
71 \( 1 + 1.95e21T + 3.79e42T^{2} \)
73 \( 1 + 4.53e21T + 7.18e42T^{2} \)
79 \( 1 + 3.96e21T + 4.42e43T^{2} \)
83 \( 1 + 9.81e21T + 1.37e44T^{2} \)
89 \( 1 + 2.11e22T + 6.85e44T^{2} \)
97 \( 1 - 1.15e22T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.94410969077338328266162563410, −10.34475754163302079557638810959, −8.738189983524086677710690222109, −7.78559960746691219109418158981, −7.20935066669917466124962808806, −5.64738965172951725860550147382, −4.36147506006957713806571573401, −2.84537186240430434108589758242, −1.07997927148170173299247262398, −0.22110856803945394481163326548, 0.22110856803945394481163326548, 1.07997927148170173299247262398, 2.84537186240430434108589758242, 4.36147506006957713806571573401, 5.64738965172951725860550147382, 7.20935066669917466124962808806, 7.78559960746691219109418158981, 8.738189983524086677710690222109, 10.34475754163302079557638810959, 10.94410969077338328266162563410

Graph of the $Z$-function along the critical line