Properties

Label 2-7e2-1.1-c23-0-46
Degree $2$
Conductor $49$
Sign $-1$
Analytic cond. $164.249$
Root an. cond. $12.8160$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.90e3·2-s − 5.49e5·3-s + 6.87e6·4-s + 3.94e5·5-s + 2.14e9·6-s + 5.93e9·8-s + 2.07e11·9-s − 1.53e9·10-s + 1.32e12·11-s − 3.77e12·12-s + 3.67e12·13-s − 2.16e11·15-s − 8.07e13·16-s + 2.14e14·17-s − 8.11e14·18-s − 2.08e14·19-s + 2.70e12·20-s − 5.15e15·22-s + 3.53e15·23-s − 3.25e15·24-s − 1.19e16·25-s − 1.43e16·26-s − 6.24e16·27-s − 1.49e16·29-s + 8.45e14·30-s + 2.46e17·31-s + 2.65e17·32-s + ⋯
L(s)  = 1  − 1.34·2-s − 1.79·3-s + 0.819·4-s + 0.00360·5-s + 2.41·6-s + 0.244·8-s + 2.20·9-s − 0.00486·10-s + 1.39·11-s − 1.46·12-s + 0.569·13-s − 0.00646·15-s − 1.14·16-s + 1.51·17-s − 2.97·18-s − 0.411·19-s + 0.00295·20-s − 1.88·22-s + 0.772·23-s − 0.437·24-s − 0.999·25-s − 0.767·26-s − 2.16·27-s − 0.228·29-s + 0.00871·30-s + 1.74·31-s + 1.30·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $-1$
Analytic conductor: \(164.249\)
Root analytic conductor: \(12.8160\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 49,\ (\ :23/2),\ -1)\)

Particular Values

\(L(12)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + 3.90e3T + 8.38e6T^{2} \)
3 \( 1 + 5.49e5T + 9.41e10T^{2} \)
5 \( 1 - 3.94e5T + 1.19e16T^{2} \)
11 \( 1 - 1.32e12T + 8.95e23T^{2} \)
13 \( 1 - 3.67e12T + 4.17e25T^{2} \)
17 \( 1 - 2.14e14T + 1.99e28T^{2} \)
19 \( 1 + 2.08e14T + 2.57e29T^{2} \)
23 \( 1 - 3.53e15T + 2.08e31T^{2} \)
29 \( 1 + 1.49e16T + 4.31e33T^{2} \)
31 \( 1 - 2.46e17T + 2.00e34T^{2} \)
37 \( 1 + 1.67e18T + 1.17e36T^{2} \)
41 \( 1 + 4.86e18T + 1.24e37T^{2} \)
43 \( 1 + 9.26e18T + 3.71e37T^{2} \)
47 \( 1 - 2.21e19T + 2.87e38T^{2} \)
53 \( 1 - 9.32e18T + 4.55e39T^{2} \)
59 \( 1 - 1.70e20T + 5.36e40T^{2} \)
61 \( 1 - 7.54e19T + 1.15e41T^{2} \)
67 \( 1 + 4.83e20T + 9.99e41T^{2} \)
71 \( 1 - 3.87e20T + 3.79e42T^{2} \)
73 \( 1 - 1.10e21T + 7.18e42T^{2} \)
79 \( 1 + 8.90e21T + 4.42e43T^{2} \)
83 \( 1 - 1.98e22T + 1.37e44T^{2} \)
89 \( 1 + 2.68e22T + 6.85e44T^{2} \)
97 \( 1 + 8.68e22T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.44685099818090272105097365401, −9.777760896155377994047745100506, −8.474494315453548394491692046780, −7.09694663891304192393674149427, −6.32351676381471099843263226624, −5.14211741587443484675221316252, −3.86872922098441968944919994242, −1.51097905146349226089883526377, −1.01398850398613063084472920947, 0, 1.01398850398613063084472920947, 1.51097905146349226089883526377, 3.86872922098441968944919994242, 5.14211741587443484675221316252, 6.32351676381471099843263226624, 7.09694663891304192393674149427, 8.474494315453548394491692046780, 9.777760896155377994047745100506, 10.44685099818090272105097365401

Graph of the $Z$-function along the critical line