Properties

Label 2-7e2-1.1-c23-0-45
Degree $2$
Conductor $49$
Sign $-1$
Analytic cond. $164.249$
Root an. cond. $12.8160$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.02e3·2-s − 2.32e5·3-s − 4.27e6·4-s + 9.33e7·5-s + 4.72e8·6-s + 2.56e10·8-s − 3.98e10·9-s − 1.89e11·10-s + 9.02e11·11-s + 9.94e11·12-s + 2.46e12·13-s − 2.17e13·15-s − 1.62e13·16-s − 1.21e14·17-s + 8.09e13·18-s − 1.65e14·19-s − 3.98e14·20-s − 1.83e15·22-s + 6.91e15·23-s − 5.98e15·24-s − 3.19e15·25-s − 5.00e15·26-s + 3.12e16·27-s − 1.21e17·29-s + 4.41e16·30-s − 1.02e17·31-s − 1.82e17·32-s + ⋯
L(s)  = 1  − 0.700·2-s − 0.759·3-s − 0.509·4-s + 0.855·5-s + 0.531·6-s + 1.05·8-s − 0.423·9-s − 0.599·10-s + 0.953·11-s + 0.386·12-s + 0.381·13-s − 0.649·15-s − 0.231·16-s − 0.859·17-s + 0.296·18-s − 0.325·19-s − 0.435·20-s − 0.668·22-s + 1.51·23-s − 0.802·24-s − 0.268·25-s − 0.267·26-s + 1.08·27-s − 1.84·29-s + 0.454·30-s − 0.723·31-s − 0.895·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $-1$
Analytic conductor: \(164.249\)
Root analytic conductor: \(12.8160\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 49,\ (\ :23/2),\ -1)\)

Particular Values

\(L(12)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + 2.02e3T + 8.38e6T^{2} \)
3 \( 1 + 2.32e5T + 9.41e10T^{2} \)
5 \( 1 - 9.33e7T + 1.19e16T^{2} \)
11 \( 1 - 9.02e11T + 8.95e23T^{2} \)
13 \( 1 - 2.46e12T + 4.17e25T^{2} \)
17 \( 1 + 1.21e14T + 1.99e28T^{2} \)
19 \( 1 + 1.65e14T + 2.57e29T^{2} \)
23 \( 1 - 6.91e15T + 2.08e31T^{2} \)
29 \( 1 + 1.21e17T + 4.31e33T^{2} \)
31 \( 1 + 1.02e17T + 2.00e34T^{2} \)
37 \( 1 + 1.32e18T + 1.17e36T^{2} \)
41 \( 1 - 2.18e18T + 1.24e37T^{2} \)
43 \( 1 - 4.71e18T + 3.71e37T^{2} \)
47 \( 1 - 7.28e18T + 2.87e38T^{2} \)
53 \( 1 - 3.91e19T + 4.55e39T^{2} \)
59 \( 1 + 8.72e19T + 5.36e40T^{2} \)
61 \( 1 - 4.86e20T + 1.15e41T^{2} \)
67 \( 1 + 3.29e20T + 9.99e41T^{2} \)
71 \( 1 - 3.32e20T + 3.79e42T^{2} \)
73 \( 1 + 3.57e21T + 7.18e42T^{2} \)
79 \( 1 - 5.37e21T + 4.42e43T^{2} \)
83 \( 1 - 1.47e22T + 1.37e44T^{2} \)
89 \( 1 - 2.01e22T + 6.85e44T^{2} \)
97 \( 1 + 1.18e23T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.60284573923746950192194448409, −9.268964971225296384497666820660, −8.818697681247069870726695730267, −7.17212626330202188492222124714, −6.01313729396035118841732136216, −5.09196651178113092399759226051, −3.80581035659919516449730366245, −2.03418492240265721680507598112, −1.00867934974759210100793742833, 0, 1.00867934974759210100793742833, 2.03418492240265721680507598112, 3.80581035659919516449730366245, 5.09196651178113092399759226051, 6.01313729396035118841732136216, 7.17212626330202188492222124714, 8.818697681247069870726695730267, 9.268964971225296384497666820660, 10.60284573923746950192194448409

Graph of the $Z$-function along the critical line