Properties

Label 2-7e2-1.1-c23-0-4
Degree $2$
Conductor $49$
Sign $1$
Analytic cond. $164.249$
Root an. cond. $12.8160$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.93e3·2-s − 1.42e5·3-s + 2.18e5·4-s − 6.28e6·5-s − 4.17e8·6-s − 2.39e10·8-s − 7.38e10·9-s − 1.84e10·10-s − 1.02e12·11-s − 3.10e10·12-s − 7.32e12·13-s + 8.94e11·15-s − 7.21e13·16-s − 9.55e13·17-s − 2.16e14·18-s + 1.44e14·19-s − 1.37e12·20-s − 2.99e15·22-s − 2.76e15·23-s + 3.41e15·24-s − 1.18e16·25-s − 2.15e16·26-s + 2.39e16·27-s + 5.32e16·29-s + 2.62e15·30-s − 1.67e17·31-s − 1.06e16·32-s + ⋯
L(s)  = 1  + 1.01·2-s − 0.463·3-s + 0.0260·4-s − 0.0575·5-s − 0.469·6-s − 0.986·8-s − 0.784·9-s − 0.0583·10-s − 1.07·11-s − 0.0120·12-s − 1.13·13-s + 0.0267·15-s − 1.02·16-s − 0.676·17-s − 0.795·18-s + 0.284·19-s − 0.00149·20-s − 1.09·22-s − 0.606·23-s + 0.457·24-s − 0.996·25-s − 1.14·26-s + 0.827·27-s + 0.810·29-s + 0.0270·30-s − 1.18·31-s − 0.0520·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $1$
Analytic conductor: \(164.249\)
Root analytic conductor: \(12.8160\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :23/2),\ 1)\)

Particular Values

\(L(12)\) \(\approx\) \(0.3449152886\)
\(L(\frac12)\) \(\approx\) \(0.3449152886\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 - 2.93e3T + 8.38e6T^{2} \)
3 \( 1 + 1.42e5T + 9.41e10T^{2} \)
5 \( 1 + 6.28e6T + 1.19e16T^{2} \)
11 \( 1 + 1.02e12T + 8.95e23T^{2} \)
13 \( 1 + 7.32e12T + 4.17e25T^{2} \)
17 \( 1 + 9.55e13T + 1.99e28T^{2} \)
19 \( 1 - 1.44e14T + 2.57e29T^{2} \)
23 \( 1 + 2.76e15T + 2.08e31T^{2} \)
29 \( 1 - 5.32e16T + 4.31e33T^{2} \)
31 \( 1 + 1.67e17T + 2.00e34T^{2} \)
37 \( 1 + 2.19e14T + 1.17e36T^{2} \)
41 \( 1 + 1.49e18T + 1.24e37T^{2} \)
43 \( 1 - 3.07e18T + 3.71e37T^{2} \)
47 \( 1 + 1.45e19T + 2.87e38T^{2} \)
53 \( 1 - 1.90e19T + 4.55e39T^{2} \)
59 \( 1 + 1.03e20T + 5.36e40T^{2} \)
61 \( 1 + 2.58e20T + 1.15e41T^{2} \)
67 \( 1 + 3.42e20T + 9.99e41T^{2} \)
71 \( 1 + 2.75e21T + 3.79e42T^{2} \)
73 \( 1 + 4.44e21T + 7.18e42T^{2} \)
79 \( 1 - 5.95e21T + 4.42e43T^{2} \)
83 \( 1 - 3.35e21T + 1.37e44T^{2} \)
89 \( 1 - 3.56e22T + 6.85e44T^{2} \)
97 \( 1 - 5.51e22T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.51018803471992995354520453021, −10.22153413539704584474727118529, −8.933021234805027449783847027883, −7.63713587936291018173169835887, −6.17953640226464802871269998759, −5.31508103440150175658384746864, −4.53902022120033761488308817258, −3.18688856994799690570708502094, −2.24677142147702191686478991020, −0.20755426634599584004880731165, 0.20755426634599584004880731165, 2.24677142147702191686478991020, 3.18688856994799690570708502094, 4.53902022120033761488308817258, 5.31508103440150175658384746864, 6.17953640226464802871269998759, 7.63713587936291018173169835887, 8.933021234805027449783847027883, 10.22153413539704584474727118529, 11.51018803471992995354520453021

Graph of the $Z$-function along the critical line