Properties

Label 2-7e2-1.1-c23-0-35
Degree $2$
Conductor $49$
Sign $1$
Analytic cond. $164.249$
Root an. cond. $12.8160$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.97e3·2-s + 2.45e4·3-s + 7.44e6·4-s + 1.19e8·5-s − 9.77e7·6-s + 3.74e9·8-s − 9.35e10·9-s − 4.74e11·10-s + 1.57e12·11-s + 1.82e11·12-s + 1.06e13·13-s + 2.93e12·15-s − 7.73e13·16-s − 1.15e14·17-s + 3.72e14·18-s + 3.11e14·19-s + 8.88e14·20-s − 6.25e15·22-s − 2.63e15·23-s + 9.21e13·24-s + 2.32e15·25-s − 4.22e16·26-s − 4.61e15·27-s + 1.24e17·29-s − 1.16e16·30-s + 1.82e17·31-s + 2.76e17·32-s + ⋯
L(s)  = 1  − 1.37·2-s + 0.0800·3-s + 0.887·4-s + 1.09·5-s − 0.110·6-s + 0.154·8-s − 0.993·9-s − 1.50·10-s + 1.66·11-s + 0.0710·12-s + 1.64·13-s + 0.0875·15-s − 1.09·16-s − 0.813·17-s + 1.36·18-s + 0.613·19-s + 0.970·20-s − 2.28·22-s − 0.576·23-s + 0.0123·24-s + 0.195·25-s − 2.25·26-s − 0.159·27-s + 1.89·29-s − 0.120·30-s + 1.29·31-s + 1.35·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $1$
Analytic conductor: \(164.249\)
Root analytic conductor: \(12.8160\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :23/2),\ 1)\)

Particular Values

\(L(12)\) \(\approx\) \(1.785028539\)
\(L(\frac12)\) \(\approx\) \(1.785028539\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + 3.97e3T + 8.38e6T^{2} \)
3 \( 1 - 2.45e4T + 9.41e10T^{2} \)
5 \( 1 - 1.19e8T + 1.19e16T^{2} \)
11 \( 1 - 1.57e12T + 8.95e23T^{2} \)
13 \( 1 - 1.06e13T + 4.17e25T^{2} \)
17 \( 1 + 1.15e14T + 1.99e28T^{2} \)
19 \( 1 - 3.11e14T + 2.57e29T^{2} \)
23 \( 1 + 2.63e15T + 2.08e31T^{2} \)
29 \( 1 - 1.24e17T + 4.31e33T^{2} \)
31 \( 1 - 1.82e17T + 2.00e34T^{2} \)
37 \( 1 - 1.80e17T + 1.17e36T^{2} \)
41 \( 1 - 4.62e18T + 1.24e37T^{2} \)
43 \( 1 - 8.29e17T + 3.71e37T^{2} \)
47 \( 1 - 7.80e18T + 2.87e38T^{2} \)
53 \( 1 - 5.04e19T + 4.55e39T^{2} \)
59 \( 1 + 4.70e19T + 5.36e40T^{2} \)
61 \( 1 - 1.22e19T + 1.15e41T^{2} \)
67 \( 1 + 5.27e20T + 9.99e41T^{2} \)
71 \( 1 - 6.12e20T + 3.79e42T^{2} \)
73 \( 1 + 5.38e20T + 7.18e42T^{2} \)
79 \( 1 - 8.49e21T + 4.42e43T^{2} \)
83 \( 1 + 1.89e22T + 1.37e44T^{2} \)
89 \( 1 + 3.75e22T + 6.85e44T^{2} \)
97 \( 1 + 8.28e22T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.88181513263438152296754578301, −9.750238827338223763905064899007, −8.934024226491844542992928317705, −8.324349540597476583799382622427, −6.61915323002968746320694317751, −5.97463784441839910905895030900, −4.18398913885546422228466125499, −2.61685252234815214888248968758, −1.43962593563418085599096379383, −0.811240428626679348056491870891, 0.811240428626679348056491870891, 1.43962593563418085599096379383, 2.61685252234815214888248968758, 4.18398913885546422228466125499, 5.97463784441839910905895030900, 6.61915323002968746320694317751, 8.324349540597476583799382622427, 8.934024226491844542992928317705, 9.750238827338223763905064899007, 10.88181513263438152296754578301

Graph of the $Z$-function along the critical line