Properties

Label 2-7e2-1.1-c23-0-32
Degree $2$
Conductor $49$
Sign $1$
Analytic cond. $164.249$
Root an. cond. $12.8160$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.30e3·2-s + 5.86e5·3-s − 3.09e6·4-s + 4.69e7·5-s − 1.34e9·6-s + 2.64e10·8-s + 2.49e11·9-s − 1.07e11·10-s − 1.75e12·11-s − 1.81e12·12-s − 1.84e12·13-s + 2.75e13·15-s − 3.48e13·16-s + 1.02e14·17-s − 5.74e14·18-s + 4.77e14·19-s − 1.45e14·20-s + 4.02e15·22-s − 2.32e15·23-s + 1.54e16·24-s − 9.71e15·25-s + 4.23e15·26-s + 9.12e16·27-s − 4.91e15·29-s − 6.33e16·30-s − 1.44e15·31-s − 1.41e17·32-s + ⋯
L(s)  = 1  − 0.794·2-s + 1.91·3-s − 0.368·4-s + 0.429·5-s − 1.51·6-s + 1.08·8-s + 2.65·9-s − 0.341·10-s − 1.84·11-s − 0.705·12-s − 0.285·13-s + 0.821·15-s − 0.495·16-s + 0.724·17-s − 2.10·18-s + 0.940·19-s − 0.158·20-s + 1.46·22-s − 0.509·23-s + 2.07·24-s − 0.815·25-s + 0.226·26-s + 3.15·27-s − 0.0747·29-s − 0.652·30-s − 0.0102·31-s − 0.694·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $1$
Analytic conductor: \(164.249\)
Root analytic conductor: \(12.8160\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :23/2),\ 1)\)

Particular Values

\(L(12)\) \(\approx\) \(2.925098480\)
\(L(\frac12)\) \(\approx\) \(2.925098480\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + 2.30e3T + 8.38e6T^{2} \)
3 \( 1 - 5.86e5T + 9.41e10T^{2} \)
5 \( 1 - 4.69e7T + 1.19e16T^{2} \)
11 \( 1 + 1.75e12T + 8.95e23T^{2} \)
13 \( 1 + 1.84e12T + 4.17e25T^{2} \)
17 \( 1 - 1.02e14T + 1.99e28T^{2} \)
19 \( 1 - 4.77e14T + 2.57e29T^{2} \)
23 \( 1 + 2.32e15T + 2.08e31T^{2} \)
29 \( 1 + 4.91e15T + 4.31e33T^{2} \)
31 \( 1 + 1.44e15T + 2.00e34T^{2} \)
37 \( 1 - 4.58e17T + 1.17e36T^{2} \)
41 \( 1 - 1.00e18T + 1.24e37T^{2} \)
43 \( 1 - 5.74e18T + 3.71e37T^{2} \)
47 \( 1 - 2.44e19T + 2.87e38T^{2} \)
53 \( 1 - 5.05e19T + 4.55e39T^{2} \)
59 \( 1 - 5.09e19T + 5.36e40T^{2} \)
61 \( 1 + 5.78e19T + 1.15e41T^{2} \)
67 \( 1 + 8.23e19T + 9.99e41T^{2} \)
71 \( 1 - 1.25e21T + 3.79e42T^{2} \)
73 \( 1 - 2.52e20T + 7.18e42T^{2} \)
79 \( 1 - 2.90e20T + 4.42e43T^{2} \)
83 \( 1 - 1.03e22T + 1.37e44T^{2} \)
89 \( 1 - 1.40e22T + 6.85e44T^{2} \)
97 \( 1 - 3.46e22T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37373810326239004259615782449, −9.805772739863419477437508761397, −8.948170222412823473027160560960, −7.78093239847906611154262042993, −7.61997677072175090779548981243, −5.29387019646410041572394279363, −3.99341281755490891640004099356, −2.78130029953167305521141153907, −1.98806666419809905481974502412, −0.77505849649339752481579077043, 0.77505849649339752481579077043, 1.98806666419809905481974502412, 2.78130029953167305521141153907, 3.99341281755490891640004099356, 5.29387019646410041572394279363, 7.61997677072175090779548981243, 7.78093239847906611154262042993, 8.948170222412823473027160560960, 9.805772739863419477437508761397, 10.37373810326239004259615782449

Graph of the $Z$-function along the critical line