L(s) = 1 | − 1.61i·2-s + (−0.642 − 0.642i)3-s − 1.61·4-s + (−1.03 + 1.03i)6-s + (1.39 − 1.39i)7-s + i·8-s − 0.175i·9-s + (1.03 + 1.03i)12-s + (−2.26 − 2.26i)14-s + (0.309 + 0.951i)17-s − 0.284·18-s − 1.79·21-s + (0.642 − 0.642i)24-s + i·25-s + (−0.754 + 0.754i)27-s + (−2.26 + 2.26i)28-s + ⋯ |
L(s) = 1 | − 1.61i·2-s + (−0.642 − 0.642i)3-s − 1.61·4-s + (−1.03 + 1.03i)6-s + (1.39 − 1.39i)7-s + i·8-s − 0.175i·9-s + (1.03 + 1.03i)12-s + (−2.26 − 2.26i)14-s + (0.309 + 0.951i)17-s − 0.284·18-s − 1.79·21-s + (0.642 − 0.642i)24-s + i·25-s + (−0.754 + 0.754i)27-s + (−2.26 + 2.26i)28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 799 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.341i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 799 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.341i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8282538186\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8282538186\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 + (-0.309 - 0.951i)T \) |
| 47 | \( 1 + T \) |
good | 2 | \( 1 + 1.61iT - T^{2} \) |
| 3 | \( 1 + (0.642 + 0.642i)T + iT^{2} \) |
| 5 | \( 1 - iT^{2} \) |
| 7 | \( 1 + (-1.39 + 1.39i)T - iT^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 - iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + (-0.642 - 0.642i)T + iT^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 53 | \( 1 - 1.17iT - T^{2} \) |
| 59 | \( 1 + 1.61iT - T^{2} \) |
| 61 | \( 1 + (0.221 - 0.221i)T - iT^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-1.26 - 1.26i)T + iT^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (-1.26 + 1.26i)T - iT^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + 1.61T + T^{2} \) |
| 97 | \( 1 + (-0.221 - 0.221i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36276273234322013119571749242, −9.546023718494355919555346824137, −8.356620478294143936276681588118, −7.52461668341903366279125653933, −6.56700279282551973566623634428, −5.22754030500683862527808367035, −4.27425796892834831771647267274, −3.45622213338103050020346655998, −1.76000343888954358364343851002, −1.06632027335765596283969352211,
2.33726233986095704338060907860, 4.39969481491432142859437293153, 5.08973779805699532604407337442, 5.53987265476286844157492164347, 6.40923652133995615017580660110, 7.64335380440630616265623353621, 8.195149374214521307408596146706, 8.977167894973261517257512384732, 9.828090828557289385108406115400, 11.06532285430356677351376511829