L(s) = 1 | − 1.61i·2-s + (−0.642 − 0.642i)3-s − 1.61·4-s + (−1.03 + 1.03i)6-s + (1.39 − 1.39i)7-s + i·8-s − 0.175i·9-s + (1.03 + 1.03i)12-s + (−2.26 − 2.26i)14-s + (0.309 + 0.951i)17-s − 0.284·18-s − 1.79·21-s + (0.642 − 0.642i)24-s + i·25-s + (−0.754 + 0.754i)27-s + (−2.26 + 2.26i)28-s + ⋯ |
L(s) = 1 | − 1.61i·2-s + (−0.642 − 0.642i)3-s − 1.61·4-s + (−1.03 + 1.03i)6-s + (1.39 − 1.39i)7-s + i·8-s − 0.175i·9-s + (1.03 + 1.03i)12-s + (−2.26 − 2.26i)14-s + (0.309 + 0.951i)17-s − 0.284·18-s − 1.79·21-s + (0.642 − 0.642i)24-s + i·25-s + (−0.754 + 0.754i)27-s + (−2.26 + 2.26i)28-s + ⋯ |
Λ(s)=(=(799s/2ΓC(s)L(s)(−0.939−0.341i)Λ(1−s)
Λ(s)=(=(799s/2ΓC(s)L(s)(−0.939−0.341i)Λ(1−s)
Degree: |
2 |
Conductor: |
799
= 17⋅47
|
Sign: |
−0.939−0.341i
|
Analytic conductor: |
0.398752 |
Root analytic conductor: |
0.631468 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ799(234,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 799, ( :0), −0.939−0.341i)
|
Particular Values
L(21) |
≈ |
0.8282538186 |
L(21) |
≈ |
0.8282538186 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 17 | 1+(−0.309−0.951i)T |
| 47 | 1+T |
good | 2 | 1+1.61iT−T2 |
| 3 | 1+(0.642+0.642i)T+iT2 |
| 5 | 1−iT2 |
| 7 | 1+(−1.39+1.39i)T−iT2 |
| 11 | 1+iT2 |
| 13 | 1−T2 |
| 19 | 1+T2 |
| 23 | 1+iT2 |
| 29 | 1−iT2 |
| 31 | 1−iT2 |
| 37 | 1+(−0.642−0.642i)T+iT2 |
| 41 | 1+iT2 |
| 43 | 1+T2 |
| 53 | 1−1.17iT−T2 |
| 59 | 1+1.61iT−T2 |
| 61 | 1+(0.221−0.221i)T−iT2 |
| 67 | 1−T2 |
| 71 | 1+(−1.26−1.26i)T+iT2 |
| 73 | 1−iT2 |
| 79 | 1+(−1.26+1.26i)T−iT2 |
| 83 | 1−T2 |
| 89 | 1+1.61T+T2 |
| 97 | 1+(−0.221−0.221i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36276273234322013119571749242, −9.546023718494355919555346824137, −8.356620478294143936276681588118, −7.52461668341903366279125653933, −6.56700279282551973566623634428, −5.22754030500683862527808367035, −4.27425796892834831771647267274, −3.45622213338103050020346655998, −1.76000343888954358364343851002, −1.06632027335765596283969352211,
2.33726233986095704338060907860, 4.39969481491432142859437293153, 5.08973779805699532604407337442, 5.53987265476286844157492164347, 6.40923652133995615017580660110, 7.64335380440630616265623353621, 8.195149374214521307408596146706, 8.977167894973261517257512384732, 9.828090828557289385108406115400, 11.06532285430356677351376511829