L(s) = 1 | − 2·2-s + 3·3-s + 4·4-s + 5.41·5-s − 6·6-s + 7·7-s − 8·8-s + 9·9-s − 10.8·10-s + 17.0·11-s + 12·12-s − 49.6·13-s − 14·14-s + 16.2·15-s + 16·16-s − 110.·17-s − 18·18-s + 19·19-s + 21.6·20-s + 21·21-s − 34.1·22-s − 30.9·23-s − 24·24-s − 95.6·25-s + 99.3·26-s + 27·27-s + 28·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.484·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 0.333·9-s − 0.342·10-s + 0.467·11-s + 0.288·12-s − 1.05·13-s − 0.267·14-s + 0.279·15-s + 0.250·16-s − 1.58·17-s − 0.235·18-s + 0.229·19-s + 0.242·20-s + 0.218·21-s − 0.330·22-s − 0.280·23-s − 0.204·24-s − 0.765·25-s + 0.749·26-s + 0.192·27-s + 0.188·28-s + ⋯ |
Λ(s)=(=(798s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(798s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 3 | 1−3T |
| 7 | 1−7T |
| 19 | 1−19T |
good | 5 | 1−5.41T+125T2 |
| 11 | 1−17.0T+1.33e3T2 |
| 13 | 1+49.6T+2.19e3T2 |
| 17 | 1+110.T+4.91e3T2 |
| 23 | 1+30.9T+1.21e4T2 |
| 29 | 1+172.T+2.43e4T2 |
| 31 | 1+267.T+2.97e4T2 |
| 37 | 1−299.T+5.06e4T2 |
| 41 | 1−108.T+6.89e4T2 |
| 43 | 1+322.T+7.95e4T2 |
| 47 | 1+426.T+1.03e5T2 |
| 53 | 1+136.T+1.48e5T2 |
| 59 | 1−303.T+2.05e5T2 |
| 61 | 1−419.T+2.26e5T2 |
| 67 | 1+709.T+3.00e5T2 |
| 71 | 1−37.6T+3.57e5T2 |
| 73 | 1−836.T+3.89e5T2 |
| 79 | 1+52.3T+4.93e5T2 |
| 83 | 1+762.T+5.71e5T2 |
| 89 | 1+406.T+7.04e5T2 |
| 97 | 1−1.48e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.442339699112908368546813392859, −8.756449709106958247689353917212, −7.79037787494325622105102366005, −7.08989259955434359846419116113, −6.12162998910597024856959408668, −4.94561268003871861868810050121, −3.80026894394417091995783385595, −2.39215471760742314962668481036, −1.71767966597873652647834231975, 0,
1.71767966597873652647834231975, 2.39215471760742314962668481036, 3.80026894394417091995783385595, 4.94561268003871861868810050121, 6.12162998910597024856959408668, 7.08989259955434359846419116113, 7.79037787494325622105102366005, 8.756449709106958247689353917212, 9.442339699112908368546813392859