L(s) = 1 | − 2·2-s + 3·3-s + 4·4-s + 11.9·5-s − 6·6-s − 7·7-s − 8·8-s + 9·9-s − 23.8·10-s − 9.57·11-s + 12·12-s − 59.5·13-s + 14·14-s + 35.7·15-s + 16·16-s + 52.8·17-s − 18·18-s − 19·19-s + 47.7·20-s − 21·21-s + 19.1·22-s − 103.·23-s − 24·24-s + 17.3·25-s + 119.·26-s + 27·27-s − 28·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 0.5·4-s + 1.06·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 0.333·9-s − 0.754·10-s − 0.262·11-s + 0.288·12-s − 1.26·13-s + 0.267·14-s + 0.616·15-s + 0.250·16-s + 0.753·17-s − 0.235·18-s − 0.229·19-s + 0.533·20-s − 0.218·21-s + 0.185·22-s − 0.939·23-s − 0.204·24-s + 0.138·25-s + 0.897·26-s + 0.192·27-s − 0.188·28-s + ⋯ |
Λ(s)=(=(798s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(798s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 3 | 1−3T |
| 7 | 1+7T |
| 19 | 1+19T |
good | 5 | 1−11.9T+125T2 |
| 11 | 1+9.57T+1.33e3T2 |
| 13 | 1+59.5T+2.19e3T2 |
| 17 | 1−52.8T+4.91e3T2 |
| 23 | 1+103.T+1.21e4T2 |
| 29 | 1+182.T+2.43e4T2 |
| 31 | 1+99.0T+2.97e4T2 |
| 37 | 1+301.T+5.06e4T2 |
| 41 | 1+100.T+6.89e4T2 |
| 43 | 1+140.T+7.95e4T2 |
| 47 | 1−234.T+1.03e5T2 |
| 53 | 1−253.T+1.48e5T2 |
| 59 | 1+410.T+2.05e5T2 |
| 61 | 1+250.T+2.26e5T2 |
| 67 | 1−272.T+3.00e5T2 |
| 71 | 1+332.T+3.57e5T2 |
| 73 | 1−544.T+3.89e5T2 |
| 79 | 1−879.T+4.93e5T2 |
| 83 | 1+200.T+5.71e5T2 |
| 89 | 1+954.T+7.04e5T2 |
| 97 | 1+1.39e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.612029698837025473311530061349, −8.773158267228061085172086766732, −7.75737096618784202256028070463, −7.07965234174733616014271917819, −6.00059661493869955474218710313, −5.16707838113381127767239126593, −3.63110788759666411519177057018, −2.46376941903874804906698979457, −1.71521295673885339944884725488, 0,
1.71521295673885339944884725488, 2.46376941903874804906698979457, 3.63110788759666411519177057018, 5.16707838113381127767239126593, 6.00059661493869955474218710313, 7.07965234174733616014271917819, 7.75737096618784202256028070463, 8.773158267228061085172086766732, 9.612029698837025473311530061349