L(s) = 1 | + 2·2-s + 3·3-s + 4·4-s + 4.39·5-s + 6·6-s + 7·7-s + 8·8-s + 9·9-s + 8.78·10-s + 50.1·11-s + 12·12-s + 11.4·13-s + 14·14-s + 13.1·15-s + 16·16-s + 107.·17-s + 18·18-s + 19·19-s + 17.5·20-s + 21·21-s + 100.·22-s − 181.·23-s + 24·24-s − 105.·25-s + 22.9·26-s + 27·27-s + 28·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.392·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 0.333·9-s + 0.277·10-s + 1.37·11-s + 0.288·12-s + 0.244·13-s + 0.267·14-s + 0.226·15-s + 0.250·16-s + 1.53·17-s + 0.235·18-s + 0.229·19-s + 0.196·20-s + 0.218·21-s + 0.971·22-s − 1.64·23-s + 0.204·24-s − 0.845·25-s + 0.173·26-s + 0.192·27-s + 0.188·28-s + ⋯ |
Λ(s)=(=(798s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(798s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
5.190188469 |
L(21) |
≈ |
5.190188469 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2T |
| 3 | 1−3T |
| 7 | 1−7T |
| 19 | 1−19T |
good | 5 | 1−4.39T+125T2 |
| 11 | 1−50.1T+1.33e3T2 |
| 13 | 1−11.4T+2.19e3T2 |
| 17 | 1−107.T+4.91e3T2 |
| 23 | 1+181.T+1.21e4T2 |
| 29 | 1+286.T+2.43e4T2 |
| 31 | 1+85.4T+2.97e4T2 |
| 37 | 1−313.T+5.06e4T2 |
| 41 | 1+18.8T+6.89e4T2 |
| 43 | 1−395.T+7.95e4T2 |
| 47 | 1−364.T+1.03e5T2 |
| 53 | 1−152.T+1.48e5T2 |
| 59 | 1+375.T+2.05e5T2 |
| 61 | 1−253.T+2.26e5T2 |
| 67 | 1+291.T+3.00e5T2 |
| 71 | 1−587.T+3.57e5T2 |
| 73 | 1+788.T+3.89e5T2 |
| 79 | 1−929.T+4.93e5T2 |
| 83 | 1+371.T+5.71e5T2 |
| 89 | 1−914.T+7.04e5T2 |
| 97 | 1−374.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.721626286440941666967277283521, −9.218843065289097000880638221309, −7.949716217421617354939913963149, −7.40360098163101451066690947611, −6.10513715377299416031223415152, −5.60079944768666754458588170464, −4.12527041213543073867454797320, −3.64643314807451000373069265319, −2.22758824285708646146733114899, −1.27935284882845820672065244683,
1.27935284882845820672065244683, 2.22758824285708646146733114899, 3.64643314807451000373069265319, 4.12527041213543073867454797320, 5.60079944768666754458588170464, 6.10513715377299416031223415152, 7.40360098163101451066690947611, 7.949716217421617354939913963149, 9.218843065289097000880638221309, 9.721626286440941666967277283521