L(s) = 1 | − 2·2-s + 3·3-s + 4·4-s + 21.5·5-s − 6·6-s + 7·7-s − 8·8-s + 9·9-s − 43.0·10-s − 33.5·11-s + 12·12-s − 46.6·13-s − 14·14-s + 64.5·15-s + 16·16-s − 41.8·17-s − 18·18-s − 19·19-s + 86.1·20-s + 21·21-s + 67.0·22-s + 52.5·23-s − 24·24-s + 338.·25-s + 93.3·26-s + 27·27-s + 28·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 0.5·4-s + 1.92·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 0.333·9-s − 1.36·10-s − 0.918·11-s + 0.288·12-s − 0.996·13-s − 0.267·14-s + 1.11·15-s + 0.250·16-s − 0.597·17-s − 0.235·18-s − 0.229·19-s + 0.962·20-s + 0.218·21-s + 0.649·22-s + 0.476·23-s − 0.204·24-s + 2.70·25-s + 0.704·26-s + 0.192·27-s + 0.188·28-s + ⋯ |
Λ(s)=(=(798s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(798s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.684726476 |
L(21) |
≈ |
2.684726476 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 3 | 1−3T |
| 7 | 1−7T |
| 19 | 1+19T |
good | 5 | 1−21.5T+125T2 |
| 11 | 1+33.5T+1.33e3T2 |
| 13 | 1+46.6T+2.19e3T2 |
| 17 | 1+41.8T+4.91e3T2 |
| 23 | 1−52.5T+1.21e4T2 |
| 29 | 1−198.T+2.43e4T2 |
| 31 | 1−117.T+2.97e4T2 |
| 37 | 1−240.T+5.06e4T2 |
| 41 | 1+3.25T+6.89e4T2 |
| 43 | 1−486.T+7.95e4T2 |
| 47 | 1+176.T+1.03e5T2 |
| 53 | 1−751.T+1.48e5T2 |
| 59 | 1−306.T+2.05e5T2 |
| 61 | 1−39.2T+2.26e5T2 |
| 67 | 1−582.T+3.00e5T2 |
| 71 | 1−586.T+3.57e5T2 |
| 73 | 1+759.T+3.89e5T2 |
| 79 | 1+300.T+4.93e5T2 |
| 83 | 1+826.T+5.71e5T2 |
| 89 | 1−455.T+7.04e5T2 |
| 97 | 1+528.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.962291906364829906743264331424, −9.074229844172003532598177775645, −8.418597743550267119083914220460, −7.36302323682049974800606716779, −6.50887901282638452657954649451, −5.53688647781536747230479761819, −4.65372271397177601728398297227, −2.55247184454947843764340915107, −2.40577868878851121014792129784, −1.02734491058775931517426532333,
1.02734491058775931517426532333, 2.40577868878851121014792129784, 2.55247184454947843764340915107, 4.65372271397177601728398297227, 5.53688647781536747230479761819, 6.50887901282638452657954649451, 7.36302323682049974800606716779, 8.418597743550267119083914220460, 9.074229844172003532598177775645, 9.962291906364829906743264331424