L(s) = 1 | − 2·2-s − 3·3-s + 4·4-s − 16.2·5-s + 6·6-s − 7·7-s − 8·8-s + 9·9-s + 32.5·10-s + 29.7·11-s − 12·12-s − 46.5·13-s + 14·14-s + 48.8·15-s + 16·16-s − 12.5·17-s − 18·18-s + 19·19-s − 65.1·20-s + 21·21-s − 59.5·22-s + 113.·23-s + 24·24-s + 140.·25-s + 93.1·26-s − 27·27-s − 28·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.45·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 0.333·9-s + 1.03·10-s + 0.816·11-s − 0.288·12-s − 0.993·13-s + 0.267·14-s + 0.841·15-s + 0.250·16-s − 0.178·17-s − 0.235·18-s + 0.229·19-s − 0.728·20-s + 0.218·21-s − 0.577·22-s + 1.02·23-s + 0.204·24-s + 1.12·25-s + 0.702·26-s − 0.192·27-s − 0.188·28-s + ⋯ |
Λ(s)=(=(798s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(798s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 3 | 1+3T |
| 7 | 1+7T |
| 19 | 1−19T |
good | 5 | 1+16.2T+125T2 |
| 11 | 1−29.7T+1.33e3T2 |
| 13 | 1+46.5T+2.19e3T2 |
| 17 | 1+12.5T+4.91e3T2 |
| 23 | 1−113.T+1.21e4T2 |
| 29 | 1−156.T+2.43e4T2 |
| 31 | 1+97.1T+2.97e4T2 |
| 37 | 1−230.T+5.06e4T2 |
| 41 | 1−204.T+6.89e4T2 |
| 43 | 1+41.5T+7.95e4T2 |
| 47 | 1+26.4T+1.03e5T2 |
| 53 | 1−465.T+1.48e5T2 |
| 59 | 1+52.9T+2.05e5T2 |
| 61 | 1+32.4T+2.26e5T2 |
| 67 | 1+568.T+3.00e5T2 |
| 71 | 1+376.T+3.57e5T2 |
| 73 | 1+1.03e3T+3.89e5T2 |
| 79 | 1−452.T+4.93e5T2 |
| 83 | 1+222.T+5.71e5T2 |
| 89 | 1−765.T+7.04e5T2 |
| 97 | 1−105.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.405694502414496120383874223338, −8.655318567592197616504934040307, −7.56287205090650517403840845193, −7.12689816361981885260474888891, −6.17882936044691037959103450225, −4.85283898169297330079317730664, −3.94358173359349410867211565202, −2.78758337654086005500480969957, −1.02446314920538743099175162483, 0,
1.02446314920538743099175162483, 2.78758337654086005500480969957, 3.94358173359349410867211565202, 4.85283898169297330079317730664, 6.17882936044691037959103450225, 7.12689816361981885260474888891, 7.56287205090650517403840845193, 8.655318567592197616504934040307, 9.405694502414496120383874223338