Properties

Label 2-798-1.1-c3-0-21
Degree $2$
Conductor $798$
Sign $1$
Analytic cond. $47.0835$
Root an. cond. $6.86174$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s + 4·4-s + 7.25·5-s − 6·6-s + 7·7-s + 8·8-s + 9·9-s + 14.5·10-s + 6.99·11-s − 12·12-s − 6.86·13-s + 14·14-s − 21.7·15-s + 16·16-s + 43.1·17-s + 18·18-s − 19·19-s + 29.0·20-s − 21·21-s + 13.9·22-s + 198.·23-s − 24·24-s − 72.3·25-s − 13.7·26-s − 27·27-s + 28·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.649·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 0.333·9-s + 0.459·10-s + 0.191·11-s − 0.288·12-s − 0.146·13-s + 0.267·14-s − 0.374·15-s + 0.250·16-s + 0.615·17-s + 0.235·18-s − 0.229·19-s + 0.324·20-s − 0.218·21-s + 0.135·22-s + 1.80·23-s − 0.204·24-s − 0.578·25-s − 0.103·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(798\)    =    \(2 \cdot 3 \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(47.0835\)
Root analytic conductor: \(6.86174\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 798,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.409607051\)
\(L(\frac12)\) \(\approx\) \(3.409607051\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
3 \( 1 + 3T \)
7 \( 1 - 7T \)
19 \( 1 + 19T \)
good5 \( 1 - 7.25T + 125T^{2} \)
11 \( 1 - 6.99T + 1.33e3T^{2} \)
13 \( 1 + 6.86T + 2.19e3T^{2} \)
17 \( 1 - 43.1T + 4.91e3T^{2} \)
23 \( 1 - 198.T + 1.21e4T^{2} \)
29 \( 1 + 29.1T + 2.43e4T^{2} \)
31 \( 1 - 39.1T + 2.97e4T^{2} \)
37 \( 1 - 152.T + 5.06e4T^{2} \)
41 \( 1 - 94.7T + 6.89e4T^{2} \)
43 \( 1 + 101.T + 7.95e4T^{2} \)
47 \( 1 + 386.T + 1.03e5T^{2} \)
53 \( 1 - 310.T + 1.48e5T^{2} \)
59 \( 1 - 207.T + 2.05e5T^{2} \)
61 \( 1 - 266.T + 2.26e5T^{2} \)
67 \( 1 + 31.7T + 3.00e5T^{2} \)
71 \( 1 + 280.T + 3.57e5T^{2} \)
73 \( 1 - 219.T + 3.89e5T^{2} \)
79 \( 1 - 1.18e3T + 4.93e5T^{2} \)
83 \( 1 - 1.07e3T + 5.71e5T^{2} \)
89 \( 1 - 1.59e3T + 7.04e5T^{2} \)
97 \( 1 + 975.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02159863679279011689978661647, −9.194525498489806474381475814585, −7.997393523414776526566671573691, −7.03533062747303681813241794800, −6.21581599676082251273819167046, −5.37134943086596578576044386797, −4.69295911333345613633247435834, −3.48039673816754829414151966094, −2.20965914515537405905342072335, −1.01378992586530547788583438467, 1.01378992586530547788583438467, 2.20965914515537405905342072335, 3.48039673816754829414151966094, 4.69295911333345613633247435834, 5.37134943086596578576044386797, 6.21581599676082251273819167046, 7.03533062747303681813241794800, 7.997393523414776526566671573691, 9.194525498489806474381475814585, 10.02159863679279011689978661647

Graph of the $Z$-function along the critical line