L(s) = 1 | + 2·2-s − 3·3-s + 4·4-s + 7.25·5-s − 6·6-s + 7·7-s + 8·8-s + 9·9-s + 14.5·10-s + 6.99·11-s − 12·12-s − 6.86·13-s + 14·14-s − 21.7·15-s + 16·16-s + 43.1·17-s + 18·18-s − 19·19-s + 29.0·20-s − 21·21-s + 13.9·22-s + 198.·23-s − 24·24-s − 72.3·25-s − 13.7·26-s − 27·27-s + 28·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.649·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 0.333·9-s + 0.459·10-s + 0.191·11-s − 0.288·12-s − 0.146·13-s + 0.267·14-s − 0.374·15-s + 0.250·16-s + 0.615·17-s + 0.235·18-s − 0.229·19-s + 0.324·20-s − 0.218·21-s + 0.135·22-s + 1.80·23-s − 0.204·24-s − 0.578·25-s − 0.103·26-s − 0.192·27-s + 0.188·28-s + ⋯ |
Λ(s)=(=(798s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(798s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.409607051 |
L(21) |
≈ |
3.409607051 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2T |
| 3 | 1+3T |
| 7 | 1−7T |
| 19 | 1+19T |
good | 5 | 1−7.25T+125T2 |
| 11 | 1−6.99T+1.33e3T2 |
| 13 | 1+6.86T+2.19e3T2 |
| 17 | 1−43.1T+4.91e3T2 |
| 23 | 1−198.T+1.21e4T2 |
| 29 | 1+29.1T+2.43e4T2 |
| 31 | 1−39.1T+2.97e4T2 |
| 37 | 1−152.T+5.06e4T2 |
| 41 | 1−94.7T+6.89e4T2 |
| 43 | 1+101.T+7.95e4T2 |
| 47 | 1+386.T+1.03e5T2 |
| 53 | 1−310.T+1.48e5T2 |
| 59 | 1−207.T+2.05e5T2 |
| 61 | 1−266.T+2.26e5T2 |
| 67 | 1+31.7T+3.00e5T2 |
| 71 | 1+280.T+3.57e5T2 |
| 73 | 1−219.T+3.89e5T2 |
| 79 | 1−1.18e3T+4.93e5T2 |
| 83 | 1−1.07e3T+5.71e5T2 |
| 89 | 1−1.59e3T+7.04e5T2 |
| 97 | 1+975.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.02159863679279011689978661647, −9.194525498489806474381475814585, −7.997393523414776526566671573691, −7.03533062747303681813241794800, −6.21581599676082251273819167046, −5.37134943086596578576044386797, −4.69295911333345613633247435834, −3.48039673816754829414151966094, −2.20965914515537405905342072335, −1.01378992586530547788583438467,
1.01378992586530547788583438467, 2.20965914515537405905342072335, 3.48039673816754829414151966094, 4.69295911333345613633247435834, 5.37134943086596578576044386797, 6.21581599676082251273819167046, 7.03533062747303681813241794800, 7.997393523414776526566671573691, 9.194525498489806474381475814585, 10.02159863679279011689978661647