Properties

Label 2-798-1.1-c3-0-19
Degree $2$
Conductor $798$
Sign $1$
Analytic cond. $47.0835$
Root an. cond. $6.86174$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·3-s + 4·4-s − 0.957·5-s − 6·6-s + 7·7-s − 8·8-s + 9·9-s + 1.91·10-s + 42.6·11-s + 12·12-s + 32.1·13-s − 14·14-s − 2.87·15-s + 16·16-s + 10.7·17-s − 18·18-s − 19·19-s − 3.83·20-s + 21·21-s − 85.3·22-s + 190.·23-s − 24·24-s − 124.·25-s − 64.3·26-s + 27·27-s + 28·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.0856·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 0.333·9-s + 0.0605·10-s + 1.16·11-s + 0.288·12-s + 0.686·13-s − 0.267·14-s − 0.0494·15-s + 0.250·16-s + 0.153·17-s − 0.235·18-s − 0.229·19-s − 0.0428·20-s + 0.218·21-s − 0.827·22-s + 1.72·23-s − 0.204·24-s − 0.992·25-s − 0.485·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(798\)    =    \(2 \cdot 3 \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(47.0835\)
Root analytic conductor: \(6.86174\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 798,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.181033518\)
\(L(\frac12)\) \(\approx\) \(2.181033518\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 - 3T \)
7 \( 1 - 7T \)
19 \( 1 + 19T \)
good5 \( 1 + 0.957T + 125T^{2} \)
11 \( 1 - 42.6T + 1.33e3T^{2} \)
13 \( 1 - 32.1T + 2.19e3T^{2} \)
17 \( 1 - 10.7T + 4.91e3T^{2} \)
23 \( 1 - 190.T + 1.21e4T^{2} \)
29 \( 1 + 278.T + 2.43e4T^{2} \)
31 \( 1 - 289.T + 2.97e4T^{2} \)
37 \( 1 + 216.T + 5.06e4T^{2} \)
41 \( 1 + 62.3T + 6.89e4T^{2} \)
43 \( 1 - 16.0T + 7.95e4T^{2} \)
47 \( 1 - 25.3T + 1.03e5T^{2} \)
53 \( 1 - 706.T + 1.48e5T^{2} \)
59 \( 1 - 655.T + 2.05e5T^{2} \)
61 \( 1 + 291.T + 2.26e5T^{2} \)
67 \( 1 + 688.T + 3.00e5T^{2} \)
71 \( 1 - 768.T + 3.57e5T^{2} \)
73 \( 1 + 446.T + 3.89e5T^{2} \)
79 \( 1 - 385.T + 4.93e5T^{2} \)
83 \( 1 + 797.T + 5.71e5T^{2} \)
89 \( 1 - 847.T + 7.04e5T^{2} \)
97 \( 1 - 307.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.678820778460937826406315757001, −8.935343754246711706229124389904, −8.403136088230482956367986075108, −7.39366630218444024596163931752, −6.68057855419727622934605903963, −5.58412538624552236995527523398, −4.21103251170042970067008257325, −3.29828707429487773094928894508, −1.95052513693247050463386446901, −0.951356660095165530972049685145, 0.951356660095165530972049685145, 1.95052513693247050463386446901, 3.29828707429487773094928894508, 4.21103251170042970067008257325, 5.58412538624552236995527523398, 6.68057855419727622934605903963, 7.39366630218444024596163931752, 8.403136088230482956367986075108, 8.935343754246711706229124389904, 9.678820778460937826406315757001

Graph of the $Z$-function along the critical line