Properties

Label 2-798-1.1-c3-0-12
Degree $2$
Conductor $798$
Sign $1$
Analytic cond. $47.0835$
Root an. cond. $6.86174$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 4·4-s − 4.88·5-s + 6·6-s + 7·7-s − 8·8-s + 9·9-s + 9.76·10-s + 63.9·11-s − 12·12-s + 61.9·13-s − 14·14-s + 14.6·15-s + 16·16-s + 22.0·17-s − 18·18-s + 19·19-s − 19.5·20-s − 21·21-s − 127.·22-s + 22.9·23-s + 24·24-s − 101.·25-s − 123.·26-s − 27·27-s + 28·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.436·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 0.333·9-s + 0.308·10-s + 1.75·11-s − 0.288·12-s + 1.32·13-s − 0.267·14-s + 0.252·15-s + 0.250·16-s + 0.314·17-s − 0.235·18-s + 0.229·19-s − 0.218·20-s − 0.218·21-s − 1.23·22-s + 0.208·23-s + 0.204·24-s − 0.809·25-s − 0.934·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(798\)    =    \(2 \cdot 3 \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(47.0835\)
Root analytic conductor: \(6.86174\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 798,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.382157867\)
\(L(\frac12)\) \(\approx\) \(1.382157867\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 + 3T \)
7 \( 1 - 7T \)
19 \( 1 - 19T \)
good5 \( 1 + 4.88T + 125T^{2} \)
11 \( 1 - 63.9T + 1.33e3T^{2} \)
13 \( 1 - 61.9T + 2.19e3T^{2} \)
17 \( 1 - 22.0T + 4.91e3T^{2} \)
23 \( 1 - 22.9T + 1.21e4T^{2} \)
29 \( 1 + 110.T + 2.43e4T^{2} \)
31 \( 1 + 54.7T + 2.97e4T^{2} \)
37 \( 1 - 286.T + 5.06e4T^{2} \)
41 \( 1 + 56.8T + 6.89e4T^{2} \)
43 \( 1 - 299.T + 7.95e4T^{2} \)
47 \( 1 + 54.7T + 1.03e5T^{2} \)
53 \( 1 + 620.T + 1.48e5T^{2} \)
59 \( 1 - 100.T + 2.05e5T^{2} \)
61 \( 1 - 560.T + 2.26e5T^{2} \)
67 \( 1 + 208.T + 3.00e5T^{2} \)
71 \( 1 + 228.T + 3.57e5T^{2} \)
73 \( 1 + 259.T + 3.89e5T^{2} \)
79 \( 1 - 747.T + 4.93e5T^{2} \)
83 \( 1 - 407.T + 5.71e5T^{2} \)
89 \( 1 + 442.T + 7.04e5T^{2} \)
97 \( 1 + 591.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.738802073242857531180895491202, −9.101094060493049738780033166719, −8.210602903894603230402082181825, −7.35662488805124208318633554463, −6.41224121636780442045465147888, −5.75165981716120699794852199523, −4.29528743052201813591849008947, −3.51136711926022868146551514980, −1.68209153937716106404003647503, −0.817450478268177221619171371813, 0.817450478268177221619171371813, 1.68209153937716106404003647503, 3.51136711926022868146551514980, 4.29528743052201813591849008947, 5.75165981716120699794852199523, 6.41224121636780442045465147888, 7.35662488805124208318633554463, 8.210602903894603230402082181825, 9.101094060493049738780033166719, 9.738802073242857531180895491202

Graph of the $Z$-function along the critical line