L(s) = 1 | − 2·2-s − 3·3-s + 4·4-s − 2.35·5-s + 6·6-s − 7·7-s − 8·8-s + 9·9-s + 4.70·10-s − 65.1·11-s − 12·12-s − 31.4·13-s + 14·14-s + 7.05·15-s + 16·16-s − 43.0·17-s − 18·18-s − 19·19-s − 9.40·20-s + 21·21-s + 130.·22-s + 92.8·23-s + 24·24-s − 119.·25-s + 62.9·26-s − 27·27-s − 28·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.210·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 0.333·9-s + 0.148·10-s − 1.78·11-s − 0.288·12-s − 0.671·13-s + 0.267·14-s + 0.121·15-s + 0.250·16-s − 0.614·17-s − 0.235·18-s − 0.229·19-s − 0.105·20-s + 0.218·21-s + 1.26·22-s + 0.841·23-s + 0.204·24-s − 0.955·25-s + 0.474·26-s − 0.192·27-s − 0.188·28-s + ⋯ |
Λ(s)=(=(798s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(798s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.3670177987 |
L(21) |
≈ |
0.3670177987 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 3 | 1+3T |
| 7 | 1+7T |
| 19 | 1+19T |
good | 5 | 1+2.35T+125T2 |
| 11 | 1+65.1T+1.33e3T2 |
| 13 | 1+31.4T+2.19e3T2 |
| 17 | 1+43.0T+4.91e3T2 |
| 23 | 1−92.8T+1.21e4T2 |
| 29 | 1+95.7T+2.43e4T2 |
| 31 | 1−161.T+2.97e4T2 |
| 37 | 1−5.04T+5.06e4T2 |
| 41 | 1+434.T+6.89e4T2 |
| 43 | 1−54.7T+7.95e4T2 |
| 47 | 1+220.T+1.03e5T2 |
| 53 | 1−175.T+1.48e5T2 |
| 59 | 1+383.T+2.05e5T2 |
| 61 | 1−431.T+2.26e5T2 |
| 67 | 1+989.T+3.00e5T2 |
| 71 | 1+456.T+3.57e5T2 |
| 73 | 1−92.3T+3.89e5T2 |
| 79 | 1−620.T+4.93e5T2 |
| 83 | 1−519.T+5.71e5T2 |
| 89 | 1−1.04e3T+7.04e5T2 |
| 97 | 1+166.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.07975305188265469799897379704, −9.095486358935142479205118957160, −8.075587467686266991987323661806, −7.41034129168171869887621587404, −6.52776980428650501183835231446, −5.49714141096704188179023152033, −4.65051666470963939744322995374, −3.13202129984313756749843177126, −2.06926443399384873153478546466, −0.36498004466784405916452090718,
0.36498004466784405916452090718, 2.06926443399384873153478546466, 3.13202129984313756749843177126, 4.65051666470963939744322995374, 5.49714141096704188179023152033, 6.52776980428650501183835231446, 7.41034129168171869887621587404, 8.075587467686266991987323661806, 9.095486358935142479205118957160, 10.07975305188265469799897379704