Properties

Label 2-79350-1.1-c1-0-46
Degree $2$
Conductor $79350$
Sign $-1$
Analytic cond. $633.612$
Root an. cond. $25.1716$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s + 4·11-s − 12-s + 2·13-s + 16-s − 6·17-s − 18-s − 4·19-s − 4·22-s + 24-s − 2·26-s − 27-s − 8·29-s + 8·31-s − 32-s − 4·33-s + 6·34-s + 36-s + 2·37-s + 4·38-s − 2·39-s + 10·41-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 1.20·11-s − 0.288·12-s + 0.554·13-s + 1/4·16-s − 1.45·17-s − 0.235·18-s − 0.917·19-s − 0.852·22-s + 0.204·24-s − 0.392·26-s − 0.192·27-s − 1.48·29-s + 1.43·31-s − 0.176·32-s − 0.696·33-s + 1.02·34-s + 1/6·36-s + 0.328·37-s + 0.648·38-s − 0.320·39-s + 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 79350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 79350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(79350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(633.612\)
Root analytic conductor: \(25.1716\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 79350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
23 \( 1 \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.15103705933175, −13.89899017879313, −13.00896887778944, −12.79491814786082, −12.17784207180726, −11.53175854604062, −11.23494495155365, −10.83934227293617, −10.34965265582619, −9.635795297395969, −9.117260063688133, −8.883327964753638, −8.285397558829856, −7.489696840001053, −7.183812030570369, −6.412260620661906, −6.122737887523674, −5.774812130954638, −4.642978099417841, −4.289854538605220, −3.813646421366796, −2.837041479570775, −2.195701697680307, −1.509384993861520, −0.8462108485297128, 0, 0.8462108485297128, 1.509384993861520, 2.195701697680307, 2.837041479570775, 3.813646421366796, 4.289854538605220, 4.642978099417841, 5.774812130954638, 6.122737887523674, 6.412260620661906, 7.183812030570369, 7.489696840001053, 8.285397558829856, 8.883327964753638, 9.117260063688133, 9.635795297395969, 10.34965265582619, 10.83934227293617, 11.23494495155365, 11.53175854604062, 12.17784207180726, 12.79491814786082, 13.00896887778944, 13.89899017879313, 14.15103705933175

Graph of the $Z$-function along the critical line