Properties

Label 2-7935-1.1-c1-0-141
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.21·2-s − 3-s − 0.522·4-s + 5-s + 1.21·6-s + 3.08·7-s + 3.06·8-s + 9-s − 1.21·10-s + 4.01·11-s + 0.522·12-s + 1.19·13-s − 3.75·14-s − 15-s − 2.68·16-s − 2.35·17-s − 1.21·18-s + 3.32·19-s − 0.522·20-s − 3.08·21-s − 4.87·22-s − 3.06·24-s + 25-s − 1.44·26-s − 27-s − 1.61·28-s + 5.62·29-s + ⋯
L(s)  = 1  − 0.859·2-s − 0.577·3-s − 0.261·4-s + 0.447·5-s + 0.496·6-s + 1.16·7-s + 1.08·8-s + 0.333·9-s − 0.384·10-s + 1.21·11-s + 0.150·12-s + 0.330·13-s − 1.00·14-s − 0.258·15-s − 0.670·16-s − 0.570·17-s − 0.286·18-s + 0.762·19-s − 0.116·20-s − 0.674·21-s − 1.04·22-s − 0.625·24-s + 0.200·25-s − 0.283·26-s − 0.192·27-s − 0.304·28-s + 1.04·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.519897548\)
\(L(\frac12)\) \(\approx\) \(1.519897548\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 - T \)
23 \( 1 \)
good2 \( 1 + 1.21T + 2T^{2} \)
7 \( 1 - 3.08T + 7T^{2} \)
11 \( 1 - 4.01T + 11T^{2} \)
13 \( 1 - 1.19T + 13T^{2} \)
17 \( 1 + 2.35T + 17T^{2} \)
19 \( 1 - 3.32T + 19T^{2} \)
29 \( 1 - 5.62T + 29T^{2} \)
31 \( 1 - 4.99T + 31T^{2} \)
37 \( 1 - 2.34T + 37T^{2} \)
41 \( 1 + 6.02T + 41T^{2} \)
43 \( 1 - 9.78T + 43T^{2} \)
47 \( 1 - 3.51T + 47T^{2} \)
53 \( 1 + 0.158T + 53T^{2} \)
59 \( 1 - 2.12T + 59T^{2} \)
61 \( 1 - 2.60T + 61T^{2} \)
67 \( 1 - 3.86T + 67T^{2} \)
71 \( 1 - 1.86T + 71T^{2} \)
73 \( 1 + 10.3T + 73T^{2} \)
79 \( 1 + 1.91T + 79T^{2} \)
83 \( 1 - 10.1T + 83T^{2} \)
89 \( 1 - 17.0T + 89T^{2} \)
97 \( 1 + 17.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.938784126098278196405261311421, −7.25920764601369613305092236342, −6.53070387272227049425912563436, −5.83005836970317819026918670168, −4.88950841057350454188193437305, −4.54195947694587286134994528680, −3.68691534097777363893955101118, −2.29094230237965779559742754070, −1.35323831004160396721980048871, −0.861501046345167547953864291395, 0.861501046345167547953864291395, 1.35323831004160396721980048871, 2.29094230237965779559742754070, 3.68691534097777363893955101118, 4.54195947694587286134994528680, 4.88950841057350454188193437305, 5.83005836970317819026918670168, 6.53070387272227049425912563436, 7.25920764601369613305092236342, 7.938784126098278196405261311421

Graph of the $Z$-function along the critical line