Properties

Label 2-7935-1.1-c1-0-127
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 5-s − 3.77·7-s + 9-s + 4.77·11-s − 2·12-s + 3.77·13-s + 15-s + 4·16-s + 6·17-s + 2.77·19-s − 2·20-s − 3.77·21-s + 25-s + 27-s + 7.54·28-s + 6·29-s − 2.77·31-s + 4.77·33-s − 3.77·35-s − 2·36-s − 9.77·37-s + 3.77·39-s − 1.22·41-s + 5.77·43-s − 9.54·44-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 0.447·5-s − 1.42·7-s + 0.333·9-s + 1.43·11-s − 0.577·12-s + 1.04·13-s + 0.258·15-s + 16-s + 1.45·17-s + 0.635·19-s − 0.447·20-s − 0.823·21-s + 0.200·25-s + 0.192·27-s + 1.42·28-s + 1.11·29-s − 0.497·31-s + 0.830·33-s − 0.637·35-s − 0.333·36-s − 1.60·37-s + 0.604·39-s − 0.191·41-s + 0.880·43-s − 1.43·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.344404608\)
\(L(\frac12)\) \(\approx\) \(2.344404608\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 - T \)
23 \( 1 \)
good2 \( 1 + 2T^{2} \)
7 \( 1 + 3.77T + 7T^{2} \)
11 \( 1 - 4.77T + 11T^{2} \)
13 \( 1 - 3.77T + 13T^{2} \)
17 \( 1 - 6T + 17T^{2} \)
19 \( 1 - 2.77T + 19T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + 2.77T + 31T^{2} \)
37 \( 1 + 9.77T + 37T^{2} \)
41 \( 1 + 1.22T + 41T^{2} \)
43 \( 1 - 5.77T + 43T^{2} \)
47 \( 1 + 9.54T + 47T^{2} \)
53 \( 1 - 3.54T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 8.54T + 61T^{2} \)
67 \( 1 - 11.7T + 67T^{2} \)
71 \( 1 - 1.22T + 71T^{2} \)
73 \( 1 - 2T + 73T^{2} \)
79 \( 1 - 5.22T + 79T^{2} \)
83 \( 1 + 3.54T + 83T^{2} \)
89 \( 1 - 9.54T + 89T^{2} \)
97 \( 1 - 0.455T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.025509067382997402073102892422, −7.06025776672361462671205189346, −6.43890100955517788649509018332, −5.82688279545592236257372335311, −5.06985039954611854474633698763, −3.99556097205701028151750049700, −3.48711012637385706122709688196, −3.08065688998400005341796379204, −1.56247667633522838433653471988, −0.813876241960218622955094070543, 0.813876241960218622955094070543, 1.56247667633522838433653471988, 3.08065688998400005341796379204, 3.48711012637385706122709688196, 3.99556097205701028151750049700, 5.06985039954611854474633698763, 5.82688279545592236257372335311, 6.43890100955517788649509018332, 7.06025776672361462671205189346, 8.025509067382997402073102892422

Graph of the $Z$-function along the critical line