Properties

Label 2-7935-1.1-c1-0-124
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.185·2-s − 3-s − 1.96·4-s − 5-s − 0.185·6-s + 4.18·7-s − 0.734·8-s + 9-s − 0.185·10-s + 2.22·11-s + 1.96·12-s + 2.71·13-s + 0.775·14-s + 15-s + 3.79·16-s − 4.35·17-s + 0.185·18-s + 6.68·19-s + 1.96·20-s − 4.18·21-s + 0.411·22-s + 0.734·24-s + 25-s + 0.501·26-s − 27-s − 8.22·28-s + 5.07·29-s + ⋯
L(s)  = 1  + 0.130·2-s − 0.577·3-s − 0.982·4-s − 0.447·5-s − 0.0756·6-s + 1.58·7-s − 0.259·8-s + 0.333·9-s − 0.0585·10-s + 0.669·11-s + 0.567·12-s + 0.751·13-s + 0.207·14-s + 0.258·15-s + 0.948·16-s − 1.05·17-s + 0.0436·18-s + 1.53·19-s + 0.439·20-s − 0.913·21-s + 0.0877·22-s + 0.149·24-s + 0.200·25-s + 0.0984·26-s − 0.192·27-s − 1.55·28-s + 0.943·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.880321510\)
\(L(\frac12)\) \(\approx\) \(1.880321510\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 + T \)
23 \( 1 \)
good2 \( 1 - 0.185T + 2T^{2} \)
7 \( 1 - 4.18T + 7T^{2} \)
11 \( 1 - 2.22T + 11T^{2} \)
13 \( 1 - 2.71T + 13T^{2} \)
17 \( 1 + 4.35T + 17T^{2} \)
19 \( 1 - 6.68T + 19T^{2} \)
29 \( 1 - 5.07T + 29T^{2} \)
31 \( 1 - 2.45T + 31T^{2} \)
37 \( 1 - 5.28T + 37T^{2} \)
41 \( 1 + 5.40T + 41T^{2} \)
43 \( 1 - 10.6T + 43T^{2} \)
47 \( 1 + 2.26T + 47T^{2} \)
53 \( 1 - 13.4T + 53T^{2} \)
59 \( 1 - 6.09T + 59T^{2} \)
61 \( 1 - 4.75T + 61T^{2} \)
67 \( 1 - 10.5T + 67T^{2} \)
71 \( 1 + 10.3T + 71T^{2} \)
73 \( 1 + 5.07T + 73T^{2} \)
79 \( 1 + 9.20T + 79T^{2} \)
83 \( 1 + 8.87T + 83T^{2} \)
89 \( 1 - 0.783T + 89T^{2} \)
97 \( 1 + 1.06T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.899102296349078216987996929399, −7.23309401625254886679956709718, −6.38527176747768382542124397570, −5.49326998856904642105292646806, −5.06390483779978186809478629224, −4.19057590084962361615373978136, −4.02744758914941745836332062333, −2.73902449962939508582679051889, −1.38306748599214929701602362658, −0.810183383774249264420969817714, 0.810183383774249264420969817714, 1.38306748599214929701602362658, 2.73902449962939508582679051889, 4.02744758914941745836332062333, 4.19057590084962361615373978136, 5.06390483779978186809478629224, 5.49326998856904642105292646806, 6.38527176747768382542124397570, 7.23309401625254886679956709718, 7.899102296349078216987996929399

Graph of the $Z$-function along the critical line