Properties

Label 2-7935-1.1-c1-0-102
Degree $2$
Conductor $7935$
Sign $-1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.38·2-s − 3-s + 3.66·4-s − 5-s + 2.38·6-s − 3.58·7-s − 3.96·8-s + 9-s + 2.38·10-s − 3.63·11-s − 3.66·12-s − 2.93·13-s + 8.53·14-s + 15-s + 2.10·16-s + 4.41·17-s − 2.38·18-s + 5.72·19-s − 3.66·20-s + 3.58·21-s + 8.64·22-s + 3.96·24-s + 25-s + 6.99·26-s − 27-s − 13.1·28-s − 1.14·29-s + ⋯
L(s)  = 1  − 1.68·2-s − 0.577·3-s + 1.83·4-s − 0.447·5-s + 0.971·6-s − 1.35·7-s − 1.40·8-s + 0.333·9-s + 0.752·10-s − 1.09·11-s − 1.05·12-s − 0.814·13-s + 2.28·14-s + 0.258·15-s + 0.526·16-s + 1.07·17-s − 0.561·18-s + 1.31·19-s − 0.819·20-s + 0.782·21-s + 1.84·22-s + 0.809·24-s + 0.200·25-s + 1.37·26-s − 0.192·27-s − 2.48·28-s − 0.213·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 + T \)
23 \( 1 \)
good2 \( 1 + 2.38T + 2T^{2} \)
7 \( 1 + 3.58T + 7T^{2} \)
11 \( 1 + 3.63T + 11T^{2} \)
13 \( 1 + 2.93T + 13T^{2} \)
17 \( 1 - 4.41T + 17T^{2} \)
19 \( 1 - 5.72T + 19T^{2} \)
29 \( 1 + 1.14T + 29T^{2} \)
31 \( 1 + 5.61T + 31T^{2} \)
37 \( 1 + 5.52T + 37T^{2} \)
41 \( 1 + 2.65T + 41T^{2} \)
43 \( 1 + 3.19T + 43T^{2} \)
47 \( 1 - 5.24T + 47T^{2} \)
53 \( 1 + 12.2T + 53T^{2} \)
59 \( 1 + 6.96T + 59T^{2} \)
61 \( 1 - 12.2T + 61T^{2} \)
67 \( 1 + 9.68T + 67T^{2} \)
71 \( 1 - 13.3T + 71T^{2} \)
73 \( 1 + 5.72T + 73T^{2} \)
79 \( 1 - 11.7T + 79T^{2} \)
83 \( 1 - 15.9T + 83T^{2} \)
89 \( 1 - 9.75T + 89T^{2} \)
97 \( 1 - 4.06T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.67322197799710231607101500477, −7.05753090294792407330159308364, −6.44112935202731177199045582532, −5.52636343175494156538253896372, −4.95503027782634516547963953358, −3.52584924421269847057473312690, −2.99693114528705331903470211085, −1.94704378372626620340137193243, −0.74003282871971393424653332680, 0, 0.74003282871971393424653332680, 1.94704378372626620340137193243, 2.99693114528705331903470211085, 3.52584924421269847057473312690, 4.95503027782634516547963953358, 5.52636343175494156538253896372, 6.44112935202731177199045582532, 7.05753090294792407330159308364, 7.67322197799710231607101500477

Graph of the $Z$-function along the critical line