Properties

Label 2-7935-1.1-c1-0-1
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.90·2-s − 3-s + 1.61·4-s − 5-s + 1.90·6-s − 0.941·7-s + 0.732·8-s + 9-s + 1.90·10-s − 0.344·11-s − 1.61·12-s − 3.84·13-s + 1.79·14-s + 15-s − 4.62·16-s − 0.110·17-s − 1.90·18-s − 6.17·19-s − 1.61·20-s + 0.941·21-s + 0.655·22-s − 0.732·24-s + 25-s + 7.31·26-s − 27-s − 1.52·28-s − 9.60·29-s + ⋯
L(s)  = 1  − 1.34·2-s − 0.577·3-s + 0.807·4-s − 0.447·5-s + 0.776·6-s − 0.355·7-s + 0.258·8-s + 0.333·9-s + 0.601·10-s − 0.103·11-s − 0.466·12-s − 1.06·13-s + 0.478·14-s + 0.258·15-s − 1.15·16-s − 0.0269·17-s − 0.448·18-s − 1.41·19-s − 0.361·20-s + 0.205·21-s + 0.139·22-s − 0.149·24-s + 0.200·25-s + 1.43·26-s − 0.192·27-s − 0.287·28-s − 1.78·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.02980394498\)
\(L(\frac12)\) \(\approx\) \(0.02980394498\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 + T \)
23 \( 1 \)
good2 \( 1 + 1.90T + 2T^{2} \)
7 \( 1 + 0.941T + 7T^{2} \)
11 \( 1 + 0.344T + 11T^{2} \)
13 \( 1 + 3.84T + 13T^{2} \)
17 \( 1 + 0.110T + 17T^{2} \)
19 \( 1 + 6.17T + 19T^{2} \)
29 \( 1 + 9.60T + 29T^{2} \)
31 \( 1 + 2.73T + 31T^{2} \)
37 \( 1 + 5.89T + 37T^{2} \)
41 \( 1 - 7.16T + 41T^{2} \)
43 \( 1 + 0.975T + 43T^{2} \)
47 \( 1 + 2.28T + 47T^{2} \)
53 \( 1 + 13.4T + 53T^{2} \)
59 \( 1 + 13.5T + 59T^{2} \)
61 \( 1 - 2.16T + 61T^{2} \)
67 \( 1 - 2.89T + 67T^{2} \)
71 \( 1 - 0.0848T + 71T^{2} \)
73 \( 1 + 2.32T + 73T^{2} \)
79 \( 1 - 6.30T + 79T^{2} \)
83 \( 1 + 4.58T + 83T^{2} \)
89 \( 1 + 11.8T + 89T^{2} \)
97 \( 1 - 13.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78127702559875551776569290280, −7.37878932834256599693916344339, −6.68840169452376878878008815788, −5.99045953004011019259136717156, −4.98399187780640015630067958104, −4.41230486232608838690437065362, −3.47896322115129953108364752767, −2.30488987047572401561563117158, −1.54333251055780298569733819625, −0.10825684376617065299394319851, 0.10825684376617065299394319851, 1.54333251055780298569733819625, 2.30488987047572401561563117158, 3.47896322115129953108364752767, 4.41230486232608838690437065362, 4.98399187780640015630067958104, 5.99045953004011019259136717156, 6.68840169452376878878008815788, 7.37878932834256599693916344339, 7.78127702559875551776569290280

Graph of the $Z$-function along the critical line