Properties

Label 2-7935-1.1-c1-0-0
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.18·2-s − 3-s + 2.76·4-s + 5-s + 2.18·6-s − 0.993·7-s − 1.67·8-s + 9-s − 2.18·10-s − 5.93·11-s − 2.76·12-s − 4.13·13-s + 2.16·14-s − 15-s − 1.87·16-s − 7.29·17-s − 2.18·18-s + 2.31·19-s + 2.76·20-s + 0.993·21-s + 12.9·22-s + 1.67·24-s + 25-s + 9.02·26-s − 27-s − 2.75·28-s − 5.22·29-s + ⋯
L(s)  = 1  − 1.54·2-s − 0.577·3-s + 1.38·4-s + 0.447·5-s + 0.891·6-s − 0.375·7-s − 0.593·8-s + 0.333·9-s − 0.690·10-s − 1.78·11-s − 0.799·12-s − 1.14·13-s + 0.579·14-s − 0.258·15-s − 0.467·16-s − 1.76·17-s − 0.514·18-s + 0.530·19-s + 0.619·20-s + 0.216·21-s + 2.76·22-s + 0.342·24-s + 0.200·25-s + 1.76·26-s − 0.192·27-s − 0.519·28-s − 0.970·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.007530423797\)
\(L(\frac12)\) \(\approx\) \(0.007530423797\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 - T \)
23 \( 1 \)
good2 \( 1 + 2.18T + 2T^{2} \)
7 \( 1 + 0.993T + 7T^{2} \)
11 \( 1 + 5.93T + 11T^{2} \)
13 \( 1 + 4.13T + 13T^{2} \)
17 \( 1 + 7.29T + 17T^{2} \)
19 \( 1 - 2.31T + 19T^{2} \)
29 \( 1 + 5.22T + 29T^{2} \)
31 \( 1 - 9.31T + 31T^{2} \)
37 \( 1 + 10.5T + 37T^{2} \)
41 \( 1 + 8.24T + 41T^{2} \)
43 \( 1 + 5.82T + 43T^{2} \)
47 \( 1 - 0.519T + 47T^{2} \)
53 \( 1 + 1.97T + 53T^{2} \)
59 \( 1 + 10.0T + 59T^{2} \)
61 \( 1 + 4.81T + 61T^{2} \)
67 \( 1 + 7.46T + 67T^{2} \)
71 \( 1 - 0.553T + 71T^{2} \)
73 \( 1 - 8.22T + 73T^{2} \)
79 \( 1 + 3.22T + 79T^{2} \)
83 \( 1 + 17.6T + 83T^{2} \)
89 \( 1 - 2.14T + 89T^{2} \)
97 \( 1 + 5.04T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.946085363269474942948439933924, −7.15905257498097455231783631453, −6.80576363861065997010270675742, −5.95971673101180633672968556445, −4.98839880083093175638982774198, −4.68727318614002459798499679263, −3.09236351342091887336604869422, −2.34642395075651839381835914926, −1.62625845788952760895733380410, −0.05383826302891702513378670181, 0.05383826302891702513378670181, 1.62625845788952760895733380410, 2.34642395075651839381835914926, 3.09236351342091887336604869422, 4.68727318614002459798499679263, 4.98839880083093175638982774198, 5.95971673101180633672968556445, 6.80576363861065997010270675742, 7.15905257498097455231783631453, 7.946085363269474942948439933924

Graph of the $Z$-function along the critical line