L(s) = 1 | + (1.02 − 3.14i)5-s + (−3.35 + 2.43i)7-s + (−2.61 + 2.04i)11-s + (−0.752 − 2.31i)13-s + (1.23 − 3.79i)17-s + (−5.57 − 4.04i)19-s + 1.74·23-s + (−4.81 − 3.49i)25-s + (−5.58 + 4.05i)29-s + (−1.82 − 5.61i)31-s + (4.24 + 13.0i)35-s + (−8.68 + 6.30i)37-s + (5.35 + 3.89i)41-s − 3.03·43-s + (−0.750 − 0.544i)47-s + ⋯ |
L(s) = 1 | + (0.457 − 1.40i)5-s + (−1.26 + 0.922i)7-s + (−0.787 + 0.616i)11-s + (−0.208 − 0.641i)13-s + (0.299 − 0.920i)17-s + (−1.27 − 0.928i)19-s + 0.363·23-s + (−0.962 − 0.698i)25-s + (−1.03 + 0.753i)29-s + (−0.327 − 1.00i)31-s + (0.717 + 2.20i)35-s + (−1.42 + 1.03i)37-s + (0.836 + 0.607i)41-s − 0.463·43-s + (−0.109 − 0.0794i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.954 + 0.299i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.954 + 0.299i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0745238 - 0.485939i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0745238 - 0.485939i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (2.61 - 2.04i)T \) |
good | 5 | \( 1 + (-1.02 + 3.14i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (3.35 - 2.43i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (0.752 + 2.31i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-1.23 + 3.79i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (5.57 + 4.04i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 1.74T + 23T^{2} \) |
| 29 | \( 1 + (5.58 - 4.05i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (1.82 + 5.61i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (8.68 - 6.30i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-5.35 - 3.89i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 3.03T + 43T^{2} \) |
| 47 | \( 1 + (0.750 + 0.544i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (3.61 + 11.1i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (1.40 - 1.02i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (4.26 - 13.1i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 4.99T + 67T^{2} \) |
| 71 | \( 1 + (-3.56 + 10.9i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-2.27 + 1.65i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (4.31 + 13.2i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-0.281 + 0.866i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 14.7T + 89T^{2} \) |
| 97 | \( 1 + (-1.48 - 4.58i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.636296288508500464323941841676, −9.172278773343649583803684942291, −8.437431220356647500037891300217, −7.31094872708849895937416510651, −6.23147237748637148835205968880, −5.31218471089871329191700634906, −4.76661674091608039463755924597, −3.16309511333389474799607150399, −2.10255392903522667717971839679, −0.22311689370199697604742271026,
2.11488807852265044708655178601, 3.30410329528561816012726492985, 3.93647485862287996400429965618, 5.67645166656663080118708328383, 6.42261788532024267282497490304, 7.01939897572346815176185370974, 7.930065751418102271148502505841, 9.153429811708449762255178351664, 10.08693381797925599218128103374, 10.60598810374718724174085416840