L(s) = 1 | + (−0.722 + 0.524i)5-s + (0.697 + 2.14i)7-s + (1.80 − 2.78i)11-s + (2.00 + 1.45i)13-s + (−0.476 + 0.346i)17-s + (−0.793 + 2.44i)19-s − 0.671·23-s + (−1.29 + 3.99i)25-s + (1.08 + 3.32i)29-s + (5.65 + 4.10i)31-s + (−1.63 − 1.18i)35-s + (2.16 + 6.65i)37-s + (−2.84 + 8.76i)41-s + 2.14·43-s + (1.34 − 4.12i)47-s + ⋯ |
L(s) = 1 | + (−0.323 + 0.234i)5-s + (0.263 + 0.811i)7-s + (0.542 − 0.839i)11-s + (0.557 + 0.404i)13-s + (−0.115 + 0.0839i)17-s + (−0.182 + 0.560i)19-s − 0.139·23-s + (−0.259 + 0.799i)25-s + (0.200 + 0.617i)29-s + (1.01 + 0.738i)31-s + (−0.275 − 0.200i)35-s + (0.355 + 1.09i)37-s + (−0.444 + 1.36i)41-s + 0.326·43-s + (0.195 − 0.601i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28351 + 0.718688i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28351 + 0.718688i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-1.80 + 2.78i)T \) |
good | 5 | \( 1 + (0.722 - 0.524i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.697 - 2.14i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.00 - 1.45i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (0.476 - 0.346i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (0.793 - 2.44i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 0.671T + 23T^{2} \) |
| 29 | \( 1 + (-1.08 - 3.32i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.65 - 4.10i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.16 - 6.65i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (2.84 - 8.76i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 2.14T + 43T^{2} \) |
| 47 | \( 1 + (-1.34 + 4.12i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-5.78 - 4.20i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (4.24 + 13.0i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-3.63 + 2.64i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 3.49T + 67T^{2} \) |
| 71 | \( 1 + (-0.357 + 0.259i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.97 - 6.07i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (3.88 + 2.82i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-5.74 + 4.17i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 11.4T + 89T^{2} \) |
| 97 | \( 1 + (5.74 + 4.17i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49495968912897900467508849474, −9.477963131544232562650343617696, −8.591593062553383902690168605559, −8.113689082101474417263288035784, −6.80594619796827172016606339757, −6.10610231685937046486747022145, −5.11307593711073504853923467035, −3.91091693910068504607149881306, −2.95171745938112540777227570319, −1.46697961361752277375789307472,
0.824951746860878851841306532387, 2.38258565443220397398810963417, 3.98116100753070920532105287632, 4.42952739060391525398579785839, 5.73840851078375773257342897930, 6.78474042022362608561269514601, 7.56789718457264049715794078822, 8.377385889509882146365772498146, 9.310070013414928046765482359741, 10.21002192654645720469809492908