L(s) = 1 | + (0.309 − 0.224i)5-s + (−1.30 − 4.02i)7-s + (−3.04 + 1.31i)11-s + (−1.80 − 1.31i)13-s + (−1.5 + 1.08i)17-s + (0.118 − 0.363i)19-s − 6.23·23-s + (−1.5 + 4.61i)25-s + (−0.145 − 0.449i)29-s + (−6.97 − 5.06i)31-s + (−1.30 − 0.951i)35-s + (1.16 + 3.57i)37-s + (1.54 − 4.75i)41-s + 11.4·43-s + (−0.0450 + 0.138i)47-s + ⋯ |
L(s) = 1 | + (0.138 − 0.100i)5-s + (−0.494 − 1.52i)7-s + (−0.918 + 0.396i)11-s + (−0.501 − 0.364i)13-s + (−0.363 + 0.264i)17-s + (0.0270 − 0.0833i)19-s − 1.30·23-s + (−0.300 + 0.923i)25-s + (−0.0270 − 0.0833i)29-s + (−1.25 − 0.909i)31-s + (−0.221 − 0.160i)35-s + (0.191 + 0.588i)37-s + (0.241 − 0.742i)41-s + 1.74·43-s + (−0.00657 + 0.0202i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.908 + 0.417i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.908 + 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.122154 - 0.557717i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.122154 - 0.557717i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (3.04 - 1.31i)T \) |
good | 5 | \( 1 + (-0.309 + 0.224i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (1.30 + 4.02i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (1.80 + 1.31i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.5 - 1.08i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.118 + 0.363i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 6.23T + 23T^{2} \) |
| 29 | \( 1 + (0.145 + 0.449i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (6.97 + 5.06i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.16 - 3.57i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.54 + 4.75i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 11.4T + 43T^{2} \) |
| 47 | \( 1 + (0.0450 - 0.138i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (7.73 + 5.62i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (4.5 + 13.8i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-5.54 + 4.02i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 4.56T + 67T^{2} \) |
| 71 | \( 1 + (-10.1 + 7.38i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.14 - 3.52i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (11.5 + 8.36i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (1.57 - 1.14i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 3.47T + 89T^{2} \) |
| 97 | \( 1 + (-5.54 - 4.02i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.970388200686257643099383341253, −9.314207124438456288878753860850, −7.84468249575400652402312034349, −7.53460203715226403192867964813, −6.48862466649686905662604999192, −5.43437171188260895405462592204, −4.35655100658539923520688740330, −3.48169877732713533332056752804, −2.04992045875617772577434027870, −0.26089921027989525029643704668,
2.18527742640660848166619280353, 2.90513532703903446328577605376, 4.35973241215345589689360605096, 5.59553559887565534769689252355, 6.01018157444758270289247381205, 7.21484592145938658404428756833, 8.202491373975087728492033878091, 9.006793680626546642250560958792, 9.690704505358796483445559284752, 10.60135638292716750434009164172