L(s) = 1 | + (1.68 + 1.22i)5-s + (−0.429 + 1.32i)7-s + (0.617 + 3.25i)11-s + (−4.68 + 3.40i)13-s + (−5.85 − 4.25i)17-s + (2.61 + 8.03i)19-s + 2.19·23-s + (−0.208 − 0.640i)25-s + (2.17 − 6.68i)29-s + (2.06 − 1.50i)31-s + (−2.33 + 1.70i)35-s + (−2.64 + 8.15i)37-s + (−0.331 − 1.01i)41-s − 7.59·43-s + (3.33 + 10.2i)47-s + ⋯ |
L(s) = 1 | + (0.752 + 0.546i)5-s + (−0.162 + 0.499i)7-s + (0.186 + 0.982i)11-s + (−1.29 + 0.944i)13-s + (−1.41 − 1.03i)17-s + (0.598 + 1.84i)19-s + 0.457·23-s + (−0.0416 − 0.128i)25-s + (0.403 − 1.24i)29-s + (0.371 − 0.269i)31-s + (−0.395 + 0.287i)35-s + (−0.435 + 1.34i)37-s + (−0.0517 − 0.159i)41-s − 1.15·43-s + (0.485 + 1.49i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.162 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.162 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.891838 + 1.05092i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.891838 + 1.05092i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-0.617 - 3.25i)T \) |
good | 5 | \( 1 + (-1.68 - 1.22i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.429 - 1.32i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (4.68 - 3.40i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (5.85 + 4.25i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.61 - 8.03i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 2.19T + 23T^{2} \) |
| 29 | \( 1 + (-2.17 + 6.68i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-2.06 + 1.50i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.64 - 8.15i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.331 + 1.01i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 7.59T + 43T^{2} \) |
| 47 | \( 1 + (-3.33 - 10.2i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.445 + 0.323i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-3.24 + 9.97i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-8.56 - 6.22i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 2.71T + 67T^{2} \) |
| 71 | \( 1 + (-1.63 - 1.18i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (0.0934 - 0.287i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (3.97 - 2.89i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-8.62 - 6.26i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 4.07T + 89T^{2} \) |
| 97 | \( 1 + (-0.949 + 0.689i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10926816326561391471513800025, −9.835002463724702861646273125459, −9.071044705741901062847629384781, −7.85322175132527537622497724741, −6.88724015237419915044653977287, −6.32496121018247900288848786848, −5.13464177611131598998770929854, −4.27590905227300107122852068392, −2.67554302189363647870801192938, −1.97288513836005409719664724762,
0.66292765484432402237097493486, 2.28124183832995027681187942496, 3.46102660538359257680428869049, 4.84922672645259991016271741471, 5.43337577976778525418911720521, 6.63485960234076261137367889178, 7.31435173878503625169637202384, 8.677105015773015835296803480443, 9.009111798376140560657979070651, 10.12270668760074241957702743640