L(s) = 1 | + (−1.30 − 0.951i)5-s + (0.690 − 2.12i)7-s + (−2.80 + 1.76i)11-s + (0.190 − 0.138i)13-s + (−2.11 − 1.53i)17-s + (−1.11 − 3.44i)19-s − 3.47·23-s + (−0.736 − 2.26i)25-s + (−0.618 + 1.90i)29-s + (−2.5 + 1.81i)31-s + (−2.92 + 2.12i)35-s + (−2.07 + 6.37i)37-s + (−2.54 − 7.83i)41-s − 11.9·43-s + (−2.28 − 7.02i)47-s + ⋯ |
L(s) = 1 | + (−0.585 − 0.425i)5-s + (0.261 − 0.803i)7-s + (−0.846 + 0.531i)11-s + (0.0529 − 0.0384i)13-s + (−0.513 − 0.373i)17-s + (−0.256 − 0.789i)19-s − 0.723·23-s + (−0.147 − 0.453i)25-s + (−0.114 + 0.353i)29-s + (−0.449 + 0.326i)31-s + (−0.494 + 0.359i)35-s + (−0.340 + 1.04i)37-s + (−0.397 − 1.22i)41-s − 1.82·43-s + (−0.332 − 1.02i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.859 + 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.159828 - 0.581119i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.159828 - 0.581119i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (2.80 - 1.76i)T \) |
good | 5 | \( 1 + (1.30 + 0.951i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.690 + 2.12i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-0.190 + 0.138i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.11 + 1.53i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.11 + 3.44i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 3.47T + 23T^{2} \) |
| 29 | \( 1 + (0.618 - 1.90i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (2.5 - 1.81i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.07 - 6.37i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (2.54 + 7.83i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 11.9T + 43T^{2} \) |
| 47 | \( 1 + (2.28 + 7.02i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-9.35 + 6.79i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.881 + 2.71i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-3.54 - 2.57i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 14.0T + 67T^{2} \) |
| 71 | \( 1 + (7.16 + 5.20i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.09 + 12.5i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-1.42 + 1.03i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-7.42 - 5.39i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 12.2T + 89T^{2} \) |
| 97 | \( 1 + (-4.78 + 3.47i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.15784623079596204636696789185, −8.939775474788635759915398831908, −8.199468943340440899585559440236, −7.37925453286861261923370057906, −6.64785456539416826654051675716, −5.18437285253534552712841686442, −4.54962889156596611235896591143, −3.51161543997683599302110364672, −2.04085543615239845620855467878, −0.28433181114560871987045309165,
1.98835962467985474878606126129, 3.16024367695056069917843379990, 4.20068911884552153463521786469, 5.44407149152177469809396418874, 6.13756889723816922420899491869, 7.32851293905154989878643184242, 8.130416795338834778083571356214, 8.739876558048406194654785589471, 9.870720511767403956030116766523, 10.71110216388648147263316641393