Properties

Label 2-787-1.1-c1-0-43
Degree $2$
Conductor $787$
Sign $-1$
Analytic cond. $6.28422$
Root an. cond. $2.50683$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.68·2-s + 2.77·3-s + 5.19·4-s − 2.34·5-s − 7.44·6-s − 2.63·7-s − 8.56·8-s + 4.70·9-s + 6.29·10-s − 4.33·11-s + 14.4·12-s + 1.38·13-s + 7.07·14-s − 6.51·15-s + 12.5·16-s + 3.49·17-s − 12.6·18-s + 6.49·19-s − 12.1·20-s − 7.32·21-s + 11.6·22-s − 5.61·23-s − 23.7·24-s + 0.503·25-s − 3.71·26-s + 4.74·27-s − 13.6·28-s + ⋯
L(s)  = 1  − 1.89·2-s + 1.60·3-s + 2.59·4-s − 1.04·5-s − 3.03·6-s − 0.996·7-s − 3.02·8-s + 1.56·9-s + 1.98·10-s − 1.30·11-s + 4.16·12-s + 0.384·13-s + 1.89·14-s − 1.68·15-s + 3.14·16-s + 0.846·17-s − 2.97·18-s + 1.49·19-s − 2.72·20-s − 1.59·21-s + 2.47·22-s − 1.17·23-s − 4.85·24-s + 0.100·25-s − 0.728·26-s + 0.912·27-s − 2.58·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 787 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 787 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(787\)
Sign: $-1$
Analytic conductor: \(6.28422\)
Root analytic conductor: \(2.50683\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 787,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad787 \( 1 + T \)
good2 \( 1 + 2.68T + 2T^{2} \)
3 \( 1 - 2.77T + 3T^{2} \)
5 \( 1 + 2.34T + 5T^{2} \)
7 \( 1 + 2.63T + 7T^{2} \)
11 \( 1 + 4.33T + 11T^{2} \)
13 \( 1 - 1.38T + 13T^{2} \)
17 \( 1 - 3.49T + 17T^{2} \)
19 \( 1 - 6.49T + 19T^{2} \)
23 \( 1 + 5.61T + 23T^{2} \)
29 \( 1 + 5.82T + 29T^{2} \)
31 \( 1 + 10.5T + 31T^{2} \)
37 \( 1 + 6.59T + 37T^{2} \)
41 \( 1 - 6.49T + 41T^{2} \)
43 \( 1 + 1.41T + 43T^{2} \)
47 \( 1 + 1.45T + 47T^{2} \)
53 \( 1 + 9.68T + 53T^{2} \)
59 \( 1 + 1.63T + 59T^{2} \)
61 \( 1 + 11.9T + 61T^{2} \)
67 \( 1 - 0.376T + 67T^{2} \)
71 \( 1 - 3.82T + 71T^{2} \)
73 \( 1 + 15.9T + 73T^{2} \)
79 \( 1 - 14.2T + 79T^{2} \)
83 \( 1 - 4.84T + 83T^{2} \)
89 \( 1 + 3.58T + 89T^{2} \)
97 \( 1 + 6.16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.554677991146778326124530672047, −9.093899795722718730658195648690, −8.043230518442626873535814639117, −7.70761230047439285758573193602, −7.23967073924776755110450587888, −5.78837299517788410154496985924, −3.51512956497922017701340073365, −3.12388369272939284321701346821, −1.84726531268174961207186058637, 0, 1.84726531268174961207186058637, 3.12388369272939284321701346821, 3.51512956497922017701340073365, 5.78837299517788410154496985924, 7.23967073924776755110450587888, 7.70761230047439285758573193602, 8.043230518442626873535814639117, 9.093899795722718730658195648690, 9.554677991146778326124530672047

Graph of the $Z$-function along the critical line