Properties

Label 2-787-1.1-c1-0-21
Degree $2$
Conductor $787$
Sign $-1$
Analytic cond. $6.28422$
Root an. cond. $2.50683$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.43·2-s − 1.33·3-s + 3.94·4-s − 4.10·5-s + 3.25·6-s + 4.95·7-s − 4.74·8-s − 1.22·9-s + 10.0·10-s − 1.82·11-s − 5.26·12-s − 3.65·13-s − 12.0·14-s + 5.46·15-s + 3.68·16-s + 5.58·17-s + 2.98·18-s + 2.06·19-s − 16.1·20-s − 6.61·21-s + 4.44·22-s − 1.26·23-s + 6.32·24-s + 11.8·25-s + 8.91·26-s + 5.62·27-s + 19.5·28-s + ⋯
L(s)  = 1  − 1.72·2-s − 0.769·3-s + 1.97·4-s − 1.83·5-s + 1.32·6-s + 1.87·7-s − 1.67·8-s − 0.407·9-s + 3.16·10-s − 0.549·11-s − 1.51·12-s − 1.01·13-s − 3.23·14-s + 1.41·15-s + 0.920·16-s + 1.35·17-s + 0.702·18-s + 0.474·19-s − 3.61·20-s − 1.44·21-s + 0.947·22-s − 0.263·23-s + 1.29·24-s + 2.36·25-s + 1.74·26-s + 1.08·27-s + 3.69·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 787 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 787 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(787\)
Sign: $-1$
Analytic conductor: \(6.28422\)
Root analytic conductor: \(2.50683\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 787,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad787 \( 1 + T \)
good2 \( 1 + 2.43T + 2T^{2} \)
3 \( 1 + 1.33T + 3T^{2} \)
5 \( 1 + 4.10T + 5T^{2} \)
7 \( 1 - 4.95T + 7T^{2} \)
11 \( 1 + 1.82T + 11T^{2} \)
13 \( 1 + 3.65T + 13T^{2} \)
17 \( 1 - 5.58T + 17T^{2} \)
19 \( 1 - 2.06T + 19T^{2} \)
23 \( 1 + 1.26T + 23T^{2} \)
29 \( 1 - 8.92T + 29T^{2} \)
31 \( 1 + 1.70T + 31T^{2} \)
37 \( 1 + 9.07T + 37T^{2} \)
41 \( 1 - 3.78T + 41T^{2} \)
43 \( 1 + 3.83T + 43T^{2} \)
47 \( 1 + 10.4T + 47T^{2} \)
53 \( 1 + 5.66T + 53T^{2} \)
59 \( 1 - 4.27T + 59T^{2} \)
61 \( 1 + 1.30T + 61T^{2} \)
67 \( 1 - 6.23T + 67T^{2} \)
71 \( 1 + 3.67T + 71T^{2} \)
73 \( 1 + 13.3T + 73T^{2} \)
79 \( 1 + 7.89T + 79T^{2} \)
83 \( 1 + 17.7T + 83T^{2} \)
89 \( 1 + 2.07T + 89T^{2} \)
97 \( 1 - 11.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06898767428682792276956800727, −8.595600278317242591041403856100, −8.172112682263549297196248917304, −7.64691231770859741645291601401, −6.97423773406575787742549212121, −5.33092059356258587598872439288, −4.61536105479709525092125518824, −2.93134301225148915324998180102, −1.24951360189730967750487546951, 0, 1.24951360189730967750487546951, 2.93134301225148915324998180102, 4.61536105479709525092125518824, 5.33092059356258587598872439288, 6.97423773406575787742549212121, 7.64691231770859741645291601401, 8.172112682263549297196248917304, 8.595600278317242591041403856100, 10.06898767428682792276956800727

Graph of the $Z$-function along the critical line