Properties

Label 2-787-1.1-c1-0-14
Degree $2$
Conductor $787$
Sign $-1$
Analytic cond. $6.28422$
Root an. cond. $2.50683$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.03·2-s − 3.10·3-s − 0.923·4-s − 3.82·5-s + 3.21·6-s + 0.702·7-s + 3.03·8-s + 6.62·9-s + 3.97·10-s − 4.15·11-s + 2.86·12-s + 4.12·13-s − 0.728·14-s + 11.8·15-s − 1.30·16-s − 3.32·17-s − 6.87·18-s + 2.39·19-s + 3.53·20-s − 2.17·21-s + 4.30·22-s + 6.71·23-s − 9.40·24-s + 9.65·25-s − 4.27·26-s − 11.2·27-s − 0.648·28-s + ⋯
L(s)  = 1  − 0.733·2-s − 1.79·3-s − 0.461·4-s − 1.71·5-s + 1.31·6-s + 0.265·7-s + 1.07·8-s + 2.20·9-s + 1.25·10-s − 1.25·11-s + 0.826·12-s + 1.14·13-s − 0.194·14-s + 3.06·15-s − 0.325·16-s − 0.807·17-s − 1.61·18-s + 0.549·19-s + 0.790·20-s − 0.475·21-s + 0.918·22-s + 1.39·23-s − 1.92·24-s + 1.93·25-s − 0.838·26-s − 2.16·27-s − 0.122·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 787 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 787 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(787\)
Sign: $-1$
Analytic conductor: \(6.28422\)
Root analytic conductor: \(2.50683\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 787,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad787 \( 1 + T \)
good2 \( 1 + 1.03T + 2T^{2} \)
3 \( 1 + 3.10T + 3T^{2} \)
5 \( 1 + 3.82T + 5T^{2} \)
7 \( 1 - 0.702T + 7T^{2} \)
11 \( 1 + 4.15T + 11T^{2} \)
13 \( 1 - 4.12T + 13T^{2} \)
17 \( 1 + 3.32T + 17T^{2} \)
19 \( 1 - 2.39T + 19T^{2} \)
23 \( 1 - 6.71T + 23T^{2} \)
29 \( 1 + 2.41T + 29T^{2} \)
31 \( 1 - 8.96T + 31T^{2} \)
37 \( 1 + 3.73T + 37T^{2} \)
41 \( 1 + 4.51T + 41T^{2} \)
43 \( 1 + 8.78T + 43T^{2} \)
47 \( 1 - 5.23T + 47T^{2} \)
53 \( 1 + 4.48T + 53T^{2} \)
59 \( 1 - 6.31T + 59T^{2} \)
61 \( 1 - 5.58T + 61T^{2} \)
67 \( 1 - 0.385T + 67T^{2} \)
71 \( 1 + 7.72T + 71T^{2} \)
73 \( 1 + 13.1T + 73T^{2} \)
79 \( 1 - 13.1T + 79T^{2} \)
83 \( 1 - 10.5T + 83T^{2} \)
89 \( 1 - 17.4T + 89T^{2} \)
97 \( 1 - 13.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26954240304230645561213527633, −8.877329355668917773092535371558, −8.091949850606670229088041576870, −7.37905384611250542159360213674, −6.51450301670668152782654601425, −5.07008437937578139988599166540, −4.75400423201593163169978026228, −3.61355366001620931818502180205, −1.02451300589763919264305593358, 0, 1.02451300589763919264305593358, 3.61355366001620931818502180205, 4.75400423201593163169978026228, 5.07008437937578139988599166540, 6.51450301670668152782654601425, 7.37905384611250542159360213674, 8.091949850606670229088041576870, 8.877329355668917773092535371558, 10.26954240304230645561213527633

Graph of the $Z$-function along the critical line