Properties

Label 2-787-1.1-c1-0-12
Degree $2$
Conductor $787$
Sign $1$
Analytic cond. $6.28422$
Root an. cond. $2.50683$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.696·2-s + 0.135·3-s − 1.51·4-s − 0.0464·5-s − 0.0945·6-s + 3.33·7-s + 2.44·8-s − 2.98·9-s + 0.0323·10-s − 0.501·11-s − 0.205·12-s − 3.43·13-s − 2.31·14-s − 0.00630·15-s + 1.32·16-s + 2.08·17-s + 2.07·18-s + 5.70·19-s + 0.0703·20-s + 0.452·21-s + 0.349·22-s + 7.75·23-s + 0.332·24-s − 4.99·25-s + 2.39·26-s − 0.812·27-s − 5.05·28-s + ⋯
L(s)  = 1  − 0.492·2-s + 0.0784·3-s − 0.757·4-s − 0.0207·5-s − 0.0386·6-s + 1.25·7-s + 0.865·8-s − 0.993·9-s + 0.0102·10-s − 0.151·11-s − 0.0594·12-s − 0.952·13-s − 0.619·14-s − 0.00162·15-s + 0.331·16-s + 0.505·17-s + 0.489·18-s + 1.30·19-s + 0.0157·20-s + 0.0988·21-s + 0.0744·22-s + 1.61·23-s + 0.0678·24-s − 0.999·25-s + 0.468·26-s − 0.156·27-s − 0.954·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 787 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 787 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(787\)
Sign: $1$
Analytic conductor: \(6.28422\)
Root analytic conductor: \(2.50683\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 787,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.061476503\)
\(L(\frac12)\) \(\approx\) \(1.061476503\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad787 \( 1 - T \)
good2 \( 1 + 0.696T + 2T^{2} \)
3 \( 1 - 0.135T + 3T^{2} \)
5 \( 1 + 0.0464T + 5T^{2} \)
7 \( 1 - 3.33T + 7T^{2} \)
11 \( 1 + 0.501T + 11T^{2} \)
13 \( 1 + 3.43T + 13T^{2} \)
17 \( 1 - 2.08T + 17T^{2} \)
19 \( 1 - 5.70T + 19T^{2} \)
23 \( 1 - 7.75T + 23T^{2} \)
29 \( 1 + 3.80T + 29T^{2} \)
31 \( 1 - 5.50T + 31T^{2} \)
37 \( 1 + 3.83T + 37T^{2} \)
41 \( 1 - 3.88T + 41T^{2} \)
43 \( 1 - 8.60T + 43T^{2} \)
47 \( 1 - 4.51T + 47T^{2} \)
53 \( 1 - 7.50T + 53T^{2} \)
59 \( 1 - 12.1T + 59T^{2} \)
61 \( 1 - 7.96T + 61T^{2} \)
67 \( 1 - 9.01T + 67T^{2} \)
71 \( 1 - 12.0T + 71T^{2} \)
73 \( 1 - 3.53T + 73T^{2} \)
79 \( 1 + 13.4T + 79T^{2} \)
83 \( 1 + 5.46T + 83T^{2} \)
89 \( 1 + 1.46T + 89T^{2} \)
97 \( 1 + 12.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11564237339115359904292118071, −9.365680503496863187629580877493, −8.588128145121590290577396242240, −7.85210748243195540880131300189, −7.25029883035128964571559047941, −5.40987636408004744137426318076, −5.17617622802534000032796197346, −3.91792256911935125560291289834, −2.52351861587981377445662601293, −0.951559900702948005934061972520, 0.951559900702948005934061972520, 2.52351861587981377445662601293, 3.91792256911935125560291289834, 5.17617622802534000032796197346, 5.40987636408004744137426318076, 7.25029883035128964571559047941, 7.85210748243195540880131300189, 8.588128145121590290577396242240, 9.365680503496863187629580877493, 10.11564237339115359904292118071

Graph of the $Z$-function along the critical line